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Abstract

Drones are a special category of robots that can be catego-
rized under unmanned aerial vehicles. A swarm of drones is
a collection of drones working interactively, and each drone
has a specific task to accomplish. Some drone swarm appli-
cations are expected not only to complete the tasks but also to
persist in the priority of the task execution order. Existing task
allocation algorithms that are developed for drone swarms
mostly focus on efficient task-sharing rather than maintain-
ing task execution order. We describe a method to share a
set of given prioritized tasks among drone robots in a drone
swarm based on an auction-based algorithm called contract
net protocol. We ensure drones acting on the field endeavor
to follow the given priority and ensure our method is capable
of utilizing the resources of drones to get the maximum out-
come. We demonstrate our results using a multi-agent simula-
tion platform and compare them with the recently developed
task prioritization approach. Our approach outperforms lead-
ing drone swarm algorithms.

Introduction

“Drone” is a common term in society for identifying au-
tonomous or remote-controlled flying machines which can
be generalized under the unmanned aerial vehicles (UAV)
category (D’Andrea 2014). Nowadays, drones are usually
used for personal purposes such as photography and cin-
ematography (Ayodeji et al. 2016), commercial purposes
such as crop spraying and planting in agriculture and farm-
ing (Klauser and Pauschinger 2021), and military purposes
like surveillance (Semsch et al. 2009), attacks, and combat
field operations (Haulman and Daniel 2003). Speeding up
mission completion, more robustness, improving the quality
of the solution, and optimizing the power sources are advan-
tages of drone swarm applications rather than single drone
applications (Alkouz and Bouguettaya 2021).

(Bahgeci and Sahin 2005; Brambilla et al. 2013) define a
swarm of robots as a large number of relatively simple phys-
ically embodied agents that can be designed such that a de-
sired collective behavior emerges from the local interactions
among agents and between the agents and the environment.
A swarm of drones can be considered a swarm of robots ac-
cording to the above definition. Each drone in the swarm has
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been assigned to complete a small specific task, and a drone
swarm can be controlled either semi-autonomously or fully
autonomously (Tahir et al. 2019).

In the future, drones will be assigned the delivery job.
Then it will be fast and cheap. Now, since researchers and
developers focus on delivering multiple items using a single
drone, task allocation algorithms are important (Vazhavelil
and Sonowal 2021). Usually, task-allocation algorithms are
focused on the completion of tasks rather than following the
order of execution, and hence the order of task execution
is random and unknown (Rizk, Awad, and Tunstel 2019).
Nonetheless special scenarios need to prioritize the execu-
tion order of tasks. As an example, when a medical supply
is delivered, some emergency supplies need to be delivered
quickly.

Mission A and mission B are two tasks in two different
locations. Location L 4 is the target location of mission A,
and location Lp is the target location of mission B. The im-
pact of mission A is less than the impact of mission B, al-
though the distance to L g is greater than the distance to L 4.
According to the impact, the drone controller decides that
mission A has higher priority than mission B; hence drones
should give their priority to accomplishing mission B after
accomplishing mission A. Even so, there is a lack of priori-
tized task-sharing algorithms for drones in the literature. In
this paper, we propose a new approach called Multi-Robot
Priority Task Allocation (MRPTA) by improving the current
CNET protocol algorithm to maintain the task execution or-
der.

The rest of the paper will be organized as follows. In the
next section we discuss the related work for this approach.
Then we present our task distribution approach and the
next section describes algorithmic implementations. Then
we present our experiments and the next section displays
our findings. Finally we focus on our conclusions.

Related Work

The multi-robot task allocation problem is a key research
problem in multi-robot applications, allocating the most
suitable task to the best robot out of a set of robots (Liu
et al. 2020). There are multiple algorithms developed to al-
locate tasks within the robot agents. Consensus-based bun-
dle algorithm (CBBA) and Contract Net Protocol (CNET)
are the most common auction-based algorithms. Simultane-



ously meta-heuristic based approaches are major types of
task allocation algorithms (Liu et al. 2020; Notomista et al.
2019). All the above developed algorithms are motivated to
answer multi-robot task allocation problems and consider
allocating tasks to every robot in the multi-robot applica-
tion rather than maintaining execution priority. According to
(Notomista et al. 2019; Roldan, Cerro, and Barrientos 2018;
Emam et al. 2020; Hoeing et al. 2007; Gerkey and Matarié
2004; Garapati et al. 2017), researchers maintain the prior-
ity of task execution within the robot scope after tasks are
all allocated. They focused on minimizing the energy con-
sumption and the time constraint of robots by prioritizing
tasks by the robot itself. There was no consideration of the
user expected task execution order. Therefore, there was no
consideration of the actual expectancy of the user. We used
modified contract net protocol (Zhen et al. 2021; Lemaire,
Alami, and Lacroix 2004) as the basis of our approach. A
drone swarm is a distributed system. Thus, we use multi-
agent based protocol to share tasks among robots. Since the
drones’ capabilities are heterogeneous, mission tasks in the
field can only be accomplished by a drone that is capable of
accomplishing it.

Contract Net Protocol (CNET) was introduced by (Smith
1980) as a task-sharing protocol for distributed problem
solvers, and it eases cooperative task-sharing through effec-
tive communication among the processor nodes. Smith em-
phasized a key issue in a decentralized distribution system,
finding the suitable idle processor node to execute the task,
which is called a connection problem. Smith resolved the
connection problem by introducing an algorithmic solution.
Two major aspects are covered in this protocol such that dis-
tributing a balanced computational load to every node in the
net is called resource allocation and selecting appropriate
nodes to execute tasks is called the focus.

Contract net protocol is mentioned as an auction-based
algorithm because task sharing happens through a bidding
process. Contract Net Protocol defines two different roles of
nodes. One role is the manager role, and the other one is
the contractor role. There are small processing units in the
contract net called nodes, and every node in the net should
belong to one of these roles. A manager is responsible for
monitoring the execution of tasks on the net and is also re-
sponsible for executing tasks assigned to it. A contractor is
responsible for the execution of the tasks. Mutual task se-
lection and allocation is done through an end-to-end negoti-
ation discussion between the manager and every other con-
tractor on the net. Most of the contract net applications nodes
are capable of acting as either a manager or a contractor or
both roles, and roles are assigned randomly among nodes
(Lemaire, Alami, and Lacroix 2004; Ota 2006).

Contract net protocol is a negotiation based protocol
which has four basic stages (Liang and Kang 2016). When
the manager receives the expected task list, it starts announc-
ing the task list to other nodes on the net. This stage is called
the task announcement stage. Tasks are introduced to other
contractor nodes via a specific template called the task tem-
plate. The task template contains detailed information about
the task. This template is understandable by every node on
the net. Then these announcements are ranked according to

the time that the task was created. This order depends on
the created time of the announcement message. A contrac-
tor assesses the tasks according to the cost of task comple-
tion and decides which task can be fulfilled with the exist-
ing resources, which is called task bidding. After the task
bidding process, every contractor has their bids. Then con-
tractors communicate back to the manager with the message
containing the bids. This stage is called the winning bids
stage. The managers evaluate the bids and award contracts to
the most suitable contractor (Smith 1980). This last stage is
called the signing contracts stage. (Sandholm 1993) imple-
mented the contract net protocol based on the marginal cost
calculation of the delivery routing project. Marginal cost is
the cost of delivery of a task. Winning bids depend on the
maximum price of the announcement and the delivery cost.
If the maximum price of the announcement is higher than
the delivery cost, then the bid is considered as won.

(Zhen et al. 2021) improved the control net protocol, ap-
plied it to a heterogeneous drone swarm, and focused more
on cooperative task allocation of a swarm of UAVs. (Zhen
et al. 2021) modified the contract net protocol which is
more efficiently assigning heterogeneous targets to a mil-
itary drone swarm. Their modification is based on the time
sequences of mission completion and balancing load rates of
allocation. These modifications assure that no robot is over-
loaded by tasks nor stays in idle stage without assigning a
single task. The algorithm of (Zhen et al. 2021) is based on
situation assessment which has three aspects. Distance index
describes the assessment of distance along the line between
task location and current drone location. Angle index de-
scribes the angular-distance between task location and cur-
rent drone location, and ability index follows the inherent
ability of the drone to accomplish the mission.

(Lemaire, Alami, and Lacroix 2004) also introduced a
new parameter called the equity factor to perform a load-
balanced task distribution strategy. Equity factor (Eq) re-
solves two major problems in multi UAV applications.
The equity factor resolves the Multiple Traveling Sales-
man Problem (MTSP) which is an extension of the Trav-
eling Salesman Problem (TSP). MTSP is based on a case
of a salesman traveling through multiple cities and the main
achievement is that the salesman should visit each city only
one time with a minimum total travel cost. Next, the equity
factor resolves the extension of MTSP which is a constraint
on task execution times. The equity factor evaluates the plan
of tasks with respect to other robots among the drone robots
in a multi UAV application like a drone swarm. The ap-
proach of (Lemaire, Alami, and Lacroix 2004) helps to eval-
uate task distribution based on the workload and the utility
costs of the robots. Time constraints and the costs of travel-
ing to the target are examples for the utility costs of robots.

(Das et al. 2015) came up with an algorithm called Con-
sensus Based Parallel Auction and Execution (CBPAE) for
sharing tasks among multiple robots based on CBBA algo-
rithm according to the given priority. This approach may
need continuous cooperation and communication between
many robots, and thus this approach is not suitable for drone
robots. (Notomista et al. 2019) came up with a way of opti-
mizing the task sharing to the multiple robots by prioritizing



tasks within the robot. They try to prioritize the tasks accord-
ing to a convenient way of minimizing the energy consump-
tion within the scope of a local robot; hence this doesn’t
support maintaining the whole mission order. (Giirel, Adar,
and Parlaktuna 2013) also introduced a method to distribute
tasks according to the given priorities for a team of mobile
ground robots. We identify this approach as the Giirel ap-
proach further in this paper. The Giirel approach is tested on
mobile ground robots and allocates tasks according to the
distance between robots.

Our approach discusses an effective priority-based task al-
location for drone swarms based on the contract net protocol
(Smith 1980; Sandholm 1993; Lemaire, Alami, and Lacroix
2004). We distribute tasks using the contract net protocol
and we improve the current contract net protocol by per-
forming the task sharing according to the priority of the task.

Task Distribution

Contract net protocol (Smith 1980) has four basic main
phases. In our case, we represent the phases as below. The
first phase is the task announcement phase. Then the esti-
mate calculation phase is the same as the bidding phase. The
third phase is the announcement estimations phase, which
is similar to the winning bids phase, and finally the sign-
ing contract phase. The first phase manager drone starts an-
nouncing tasks to the other contract drones. Then contract
drones start to calculate estimations of each task and send
back the estimations to the manager drone. Then the man-
ager node starts signing the contracts and allocating tasks
to the appropriate drones according to the priorities of the
tasks.

Task Representation

Consider n number of different tasks to accomplish in do-
main ¢ denoted as T' = {11, T, ..., T}, }. Each task has its
own rank or priority which is assigned by the controller.
T; € T task has assigned w rank which is represented as
wr,, 0 < wyp, <1 which is called rank factor.

S wr, =1 (1)

Task Announcement

Task announcement addresses all drone nodes in the contract
net. This paper assumes that only one manager drone exists
and others act as contractors within the net. This manager
node advertises the ordered task list to others through a spe-
cific template. This template contains the target location and
type of the task. This paper also assumes that the trajectories
of the drone are drown on the two dimensional plane due to
the simulation purposes. In the rest of the paper we define
the mission for a drone as completing a task.

T; is the task representation vector. (x;,y;) is the coordi-
nation of i-th task T; € T, 1 < i < n, the destination where
the assigned drone should fly. z; represents the type of task
that can be fulfilled by the assigned drone.
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Figure 1: Task representation in graph structure n = 3

Calculate Estimates

Once the task announcement phase is completed, drones
have a list of tasks to perform. Then drones assess the capa-
bility of fulfilling each task by a single drone. This assess-
ment is named a situation assessment. Drones start to calcu-
late situation assessments. Situation assessment is a metric
for measuring the ability to complete a given task. There are
three aspects considered to describe situation assessments
such as the distance index, the ability index, and the angle in-
dex (Zhen et al. 2021). We only consider distance index and
ability index, and we can remove angle index because the
rotation of a drone around the yaw axis at the same location
does not affect the situation assessment (Sandholm 1993).
Situation assessment calculation will result from the capa-
bility of the mission success, time constraint to complete the
mission, start location, end location, and power consumption
as the basic outcomes. A robot should calculate situation as-
sessments for every task from every possible location that
the robot could start the mission.

The target field can be represented as a directed complete
graph G = (V, E). V represents a set of all tasks, and E rep-
resents the set of situation assessments which are calculated
from one task to a certain V task. T, and 7T, are the drone
starting and ending tasks respectively relevant to the drone
robot. The contractor drone robot receives a list of tasks T’
from the manager drone and the contractor drone adds start
and end tasks 75 and T, to generate the correct vertices list.
Then the new set of vertices is V = {Ts, Th, T, ..., Tn, Tt }-
The situation assessment between two tasks is denoted by
Ar, 1, where T;, T; € T or T; = T or Tj = Te. Situation
assessment can be calculated with Equation 3. In this paper
we assume the drone needs to visit the task that is manda-
tory to complete the mission successfully. Starting and end
locations are Ts and 7T, respectively. The robot calculates
the situation assessments of every 7; task and publishes the
graph as an adjacency matrix called the situation assessment
matrix R'*" where [ is the number of tasks including start
and end nodes and r is the number of tasks without includ-
ing start and end nodes. Figure 1 shows an example graph
representation of a task field which n = 3.

[ A, — (T3, T5); 3



Signing Contracts

Consider m number of different robots sharing these n
tasks. The set of the drone robots is denoted as D =
{dy,ds,...,d, }. Dy, represents the k-th drone robot where
DpeD,1<k<m

Dy = (@, Yk, 2k Vi, Ok) @

(zk, yr) represents the current coordinates of the drone,
and z;, describes the type of tasks that this specific k-th drone
can perform. vy and 6 represent flying velocity and the
heading angle respectively. Next, the manager drone selects
the next prioritized task from ordered task set T, = {T; €
T|wr, > wr,_, }. Then the manager drone selects the task
which has the lowest utility cost among the idle drones. Util-
ity cost UC'T, r, is a single numeric value representing the
Ar, 1, that can be calculated by Equation 5 from the situa-
tion assessment. F denotes the utility function for converting
situation assessments into utility costs.

UCr, 1, = F(Ar, 1) (5)

Idle robots mean the set of drone robots has completed the
given mission or not yet started. After the selected robot, the
total utility cost UCT of the robot is calculated as Equation
6. The number of tasks assigned to a certain drone robot
conditioned on the total utility cost UC'T is lower bounded
or equals to the maximum utility cost UC), 4, of the robot
according to Equation 7.

n—1

UCT =UCr, 1, + Y UCrr,, +UCr, 1, (6)
1=1

UCT < UChaa (N

Ur, 7, and Ur, 7. represent the utility costs from the ini-
tial location to the first task and the situation assessment for
the return to the end location from the location of the last
task respectively.

Proposed Algorithm

Algorithm 1 describes the task-sharing algorithm. In the first
stage, the queue of tasks, the list of drones, and the list of sit-
uation assessment matrices are passed as input parameters.
The queue of tasks should be filled in descending order ac-
cording to the assigned ranks of the tasks. When we get the
first element, we will receive the highest priority task. Then
the next prioritized task is taken out of the queue of tasks.
Then we perform an iterative check on the drones list to see
whether there are any idle drone robots that can be found. If
any idle drone robot is found, we find the related situational
assessment value from the situational assessments list A and
we add the situational assessment to another list called LA.
Then we sort the LA list in descending order according to
the utility cost value of every situational assessment.

Then we iterate through the LA list from the situational
assessment which has the lowest utility cost to the high-
est utility cost. In each iteration, we find the related drone
robot D, for the selected situational assessment Ap, ,.

Then we calculate the total utility cost Dy o of the drone
robot Dr,_,. The total utility cost UCT is the sum of the
selected situational assessment utility cost A7, and the se-
lected drone’s total utility cost Dyep. If UCT is less than
or equal to the D, drone’s maximum utility cost Dy
we assign the task T to the D, , drone.

max

Algorithm 1: Task sharing algorithm for manager

1: T = Queue of tasks which needs to be completed by de-
scending order

2: D = List of drones

3: A = List of situation assessment matrices

4: while T'queueisnotempty do

5:  T; + T.dequeue() {Get next prioritized task}
6: LA =empty()

7:  for k =1to D.size do

8: Dy, + D[k]

9: if Dy.isIdle then
10: SAr, 1, < A[T;.location][Dy.location]
11: LA.Cde(SATi)Tj)
12: end if
13:  end for

{Sort the list according to the utility cost}
14: LAgrdered = sort(c < LA[c|.utility_cost)
15 forj =1to LA, dereq-Size do

16: ATSEL — LAordered[j}

17: DTSel — D'get(ATsel)

18: Dyor + DTsel'UCT

19: DUC,,,LW — DTSEL-UCmaa:

20: UCT + ATsel UCT + Dycer
21: iftUCT < Dyc,,,, then

22: Dr,,.add_and_assign(T;)
23: break

24: end if

25:  end for

26: end while

Experiments
Experiments Setup

This paper uses MASON (Luke 2019) multi-agent simula-
tion library on top of the JAVA (Oracle 2014) virtual ma-
chine. We set the simulation field as 400 x 400 pixels. The
number of simulations that run for each scenario depends on
the number of target task points covering the whole field. We
assure that more than 90% of the field area is covered from
the randomly generated tasks for every scenario. We run the
number of search iterations to find the unassigned task loca-
tions in every simulation. When the coverage is more than
90%, the number of search iterations grows exponentially
and hence we assume that almost all the fields are covered.
We run the simulations as the number of tasks over the num-
ber of drones. We define a trial case that contains a number
of trial iterations. A trial iteration is one time of simulation
run. We decide minimum and maximum boundaries for the
drone robot count and the task count for every trial case. We
select a random number of drone robots and a random num-
ber of tasks within the trial range.



Number of Drone Robots

Number
f
Taosks [5-10] \ [15-20] \ [25-30] \ [35-40]
Giirel MRPTA | Giirel MRPTA | Giirel MRPTA | Giirel MRPTA
TC = 8952 TC = 8961
K =0.488 K =0.629
(10-20] T=142382 T=797.8
MAD=6.08 MAD=0.5
TC = 5291 TC = 5312 TC = 5297 TC = 5297
[20-30] K =0451 K =0.459 K =0.428 K =0.806
T=206681 T=1050.35 | T=209232 T=730.61
MAD =887 MAD=0.5 | MAD=335 MAD=0.5
TC = 3761 TC = 3776 TC = 3766 TC = 3762 TC = 3764 TC = 3760
(30-40] K =0.422 K =0.371 K =0.405 K =0.68 K =0.394 K =0.872
T=2628.68 T=1340.98 | T=264832 T=801.65 | T=2677.87 T =723.37
MAD=12.1 MAD=05 | MAD=45 MAD=05 | MAD=287 MAD=0.5
TC = 2918 TC =2914 TC =2917 TC =2918 TC =2911 TC =2911 TC = 2909 TC =2917
[40-50] K =0.409 K =0.322 K =0.392 K =0.585 K =0.379 K =0.791 K =0.368 K =0.899
T=3258.63 T=161548 | T=322547 T=915.11 | T=3183.03 T=773.09 | T=3160.06 T=720.76
MAD=136 MAD=0.5 | MAD=57 MAD=049 | MAD=36 MAD=0.5 | MAD=2.64 MAD =048
TC = 2382 TC = 2384 TC = 2384 TC =2383 TC = 2383 TC = 2386 TC = 2383 TC = 2383
[50-60] K =0.398 K =0.286 K =0.379 K =0.517 K =0.368 K =0.705 K =0.356 K =0.835
T=386435 T=1877.28 | T=3788.39 T=1026.84 | T=3900.8 T=82566 | T=381531 T=752.16
MAD=152 MAD=05 | MAD=681 MAD=0.5 | MAD=434 MAD=046 | MAD=3.18 MAD=0.5
TC = 2016 TC = 2016 TC =2013 TC =2015 TC =2013 TC =2015 TC =2012 TC =2019
(60-70] K =0.392 K=0.261 K =0.373 K=047 K =0.362 K =0.651 K =0.349 K=0.77
T=4322.58 T=2208.06 | T=441238 T=1141.86 | T=4434.47 T=857.77 | T=4412.69 T=790.19
MAD=186 MAD=0.5 | MAD=833 MAD=0.5 | MAD=507 MAD=0.5 | MAD=3.17 MAD =049
TC = 1745 TC = 1746 TC = 1744 TC = 1745 TC = 1743 TC = 1742 TC = 1741 TC = 1746
[70-80] K =0.379 K=0.24 K =0.365 K =0.432 K =0.348 K=0.59 K =0.339 K =0.722
T=495894 T=2481.28 | T=49355 T=127432 | T=48943 T=961.49 | T=4956.14 T=2827.47
MAD=20 MAD=0.5 | MAD=9.12 MAD=0.5 | MAD=5.81 MAD=0.5 | MAD=421 MAD=0.38
TC = 1539 TC = 1537 TC = 1537 TC = 1541 TC = 1539 TC = 1538 TC = 1536 TC = 1536
[80-90] K =0.376 K =0.227 K =0.352 K =0.405 K =0.349 K =0.549 K=0.34 K =0.682
T=5521.99 T=27589 | T=5695.66 T=13633 | T=5536.08 T=1036.69 | T=25559.7 T =857.07
MAD=234 MAD=05 | MAD=993 MAD=0.5 | MAD=647 MAD=049 | MAD=4.79 MAD =0.49
TC = 1376 TC = 1375 TC = 1374 TC = 1376 TC = 1375 TC = 1376 TC = 1374 TC = 1375
[90-100] K =0.37 K=0.214 K =0.371 K =0.381 K =0.344 K =0.522 K =0.327 K =0.646
T=6461.12 T=3039.57 | T=6099.42 T=147578 | T=6240.51 T=109236 | T=6001.95 T =904.23
MAD=25 MAD=0.5 | MAD=113 MAD=0.5 | MAD=7.12 MAD=05 | MAD=5.17 MAD=0.5

Table 1: Number of trials ran for different number of targets with respect to the different number of drone robots

In this experiment, we obtained 4 different results. First
is the number of trial iterations denoted by TC. The second
one is the Kendall’s Tau correlation value which evaluates
the difference between actual and expected lists of execution
orders indicated by K. Third, T mentions the mean execu-
tion time for a simulation trial run. Finally, we measure how
the set of tasks is divided among drone robots. We mapped
assigned tasks against the drone robot of each trial and cal-
culated the mean absolute deviation, which measures the av-
erage distance between data points and the mean called vari-

ability. MAD shows the maximum mean absolute deviation
value which we observe within the set of trials.

Kendall’s Tau

We use modified Kendall’s Tau method (Pusala et al. 2017)
for comparing the expected ranks order with the actual ranks
order of tasks. Kendall’s distance is a metric for evaluating
the rank correlation between two ranked sets. (Fagin, Ku-
mar, and Sivakumar 2003) proposed a method to measure
Kendall’s distance between two lists by pair-wise disagree-
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Figure 2: (a) Kendall’s Tau correlation score over a different number of tasks for a different number of drone robots. (b)
Execution time over a different number of tasks for a different number of drone robots

ment penalty according to the order of the items in the lists.
This method considers the top k number of items in a list,
although in our case we assumed k is the size of the whole
list. In our case we have two lists: expected task list 7. and
actual task list 7,. P(7e,7,) denotes item pair from 7, and
T, lists. We consider the first two cases of their method. The
pair of items of (i,j) € P(7.,7,) and Kendall’s distance is
e
* Case 1: Item ¢ and j are in both the 7. and 7, lists respec-
tively. If item ¢ is ahead of item j in both the 7, and 7,

lists Fg?

and item j is ahead of item i in 7, Fz(pj) =1.

= 0. If item ¢ is ahead of item j in the list 7,

* Case 2: Both items ¢ and j are in the 7. although only
item ¢ is in the 7,. If item ¢ in 7, is ahead of 7. then

?g}) = 0 otherwise ?Z(-Z-) =1

In our case, the user may have a facility to duplicate the
rankings in the list of expected tasks.

Results

Table 1 shows the simulation results of our experiment. Our
results show three major aspects. The first one is the equiv-
alence between the order of executed tasks and the expected
order of execution tasks. We compare our results with the
Giirel approach experiment results. The second one is how
long has the swarm taken to complete the mission. Finally,
we test whether our algorithm efficiently divided the tasks
among robots. Both experiments were executed in the same
simulation environment with the same computational condi-
tions. We here considered that the drone robot count is less
than or equal to the target tasks count. Task locations were
decided randomly and the ranks also assigned to the tasks
were random. MRPTA column shows results for our experi-
ment, and Giirel column shows results for simulation exper-
iments of Giirel approach. Every cell shows the experiment
result values for a specific drone robot’s range, task range,
and method.

Figure 2(a) demonstrates how Kendall’s Tau correlation
score changes with respect to the number of tasks and the
number of drone robots. We set a number of tasks as the ab-
scissa and Kendall’s Tau correlation score as ordinate. As
a result, we observe that Kendall’s Tau correlation score is
proportional to the number of drone robots and negative ex-
ponential to the number of tasks. When the number of drone
robots is getting close to the number of tasks, Kendall’s Tau
correlation score has a high value which means that the ex-
pected list and the actual list are not in the same order. Figure
2(b) illustrates how the execution time changes with respect
to the number of tasks and the number of drone robots. It
shows that execution time is proportional to the number of
tasks. When the number of drone robots is too low com-
pared to the number of tasks, execution time appears as an
unexpectedly high value. Comparatively, when the number
of drone robots increases, the difference between the execu-
tion time strictly decreases.

We compared our results with the Giirel approach. In our
experiment, the optimum number of drone robots was 15-20.
We choose the 15-20 range for our comparison here. Fig-
ure 3(a) illustrates how the Kendall’s Tau correlation score
varies between the two methods. We observe that the Giirel
approach has a lower and more stable Kendall’s Tau correla-
tion score compared to our method, thus practically imply-
ing that the Giirel approach more accurately maintains the
expected execution order of tasks than our method. When we
increase the number of tasks, the Kendall’s Tau correlation
score shows a decline pattern in our method. The difference
between Kendall’s Tau correlation scores of our method and
the Giirel approach has an inverse correlation with the num-
ber of tasks. Regardless of the number of tasks, Kendall’s
Tau correlation score of the Giirel approach is invariable.
Figure 3(b) shows how execution time varies between the
two methods. As the experiment results show, the execution
time of the Giirel approach is much higher than our method
at every trial. Furthermore, when we increase the task count,
execution time drastically increases with a higher slope com-
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Figure 4: Kendall’s Tau correlation score and execution time
with respect to the field size

pared to our method. Our method is more capable of keep-
ing the stability of the execution time over the task count.
Almost all the drone robots are assigned at least one task.
We evaluate how tasks were shared among the drones. We
map the robot and number of assigned tasks and calculated
MAD using the robot-task count map for every trial case.
Then we filter out the maximum MAD value and mean value
for the respective MAD value for every robot-task combina-
tion. When the difference between MAD and mean values
gets closer to zero, it shows that tasks are not uniformly dis-
tributed among drone robots. The Giirel approach always re-
sults in lower values than our method, thus showing us that
our method is better at distributing tasks uniformly among
drone robots. Hence, we show that our method tries to share
tasks optimally and equally among drone robots.

We increase the field size and observe the difference in
Kendall’s Tau correlation score as shown in Figure 4. For
this, we select 15-20 drone robots with 80-90 tasks. We re-
alize that increasing the field size does not have a sufficient
effect on the Kendall’s Tau correlation score though we see
a slight decline in the Kendall’s Tau correlation score. Al-
though we are enlarging the field size, according to our ex-

periment Kendall’s Tau correlation score does not show a
consistent pattern. The field size does not show an adequate
correlation with the Kendall’s Tau correlation score. We ob-
serve a correlation between execution time and field size
also reflected in Figure 4. Targets are spread widely in larger
fields, and hence traversal time also is high. Therefore the
execution time increases according to the field size.

Conclusion

In this paper, we propose a novel approach for the priority-
based task allocation strategy for drone swarms based on
contract net protocol. Our goal was to develop an algorithm
for drone swarms. Then the swarm of drones performs task
execution and collectively follows the user’s expected or-
der. We evaluated this method on the multi-agent simulation
platform, and ranks were assigned to the tasks according
to the given priorities. We evaluated how the drone swarm
maintains the user expected execution order of tasks, which
changes drone counts over to the task count. We realized
that this approach is suitable for drone swarm applications
that have considerably higher numbers of targets to achieve
with the limited number of drones. However, missions con-
sume a considerable amount of time, which is a drawback
to performance. This approach is cost-effective because the
amount of resources is considerably low. This approach is
not beneficial for time-critical and large drone swarm appli-
cations. Additionally, we implemented this method in real-
world drone swarm applications and evaluated our simula-
tion results in the real world in the future. Proposed future
works include developing and improving this algorithm to
perform the dynamic task allocation problem and improving
this for time-critical applications
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