
University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Release 2.6

PROGRAM ENCRYPTION TOOLKIT

GRAPHICAL USER INTERFACE
(PETGUI)

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

What is PETGUI?

PET graphical user interface (GUI) is a front-end to the Java-
based Program Encryption Toolkit (PET).

Its primary purpose is to support visualization and analysis of
information related to obfuscation and deobfuscation of digital

logic circuits defined at the (netlist) gate-level.

It also provides a rich set of features for generating information
about digital logic circuits themselves in terms of function, form,

cryptographic properties, structure, and visualization.

2

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Installing PETGUI

• Download and expand the entire PETGUI folder (ZIP),
decompress and put it in a location of your choosing

• Put the PETGUI folder in a path that does not use
spaces… this will prevent errors with some third party
tools

• PETGUI has not been checked for compatibility with
versions of Java below 7.X and should be compatible with
any Java version below 16.X

• PETGUI is packaged as an executable JAR
• If you have a compatible JRE installed, double-click PETGUI.jar
• If you don’t have a compatible JRE, PETGUI comes with a default

Java runtime environment (JRE): run PETGUI.bat

• No other installation should be required beyond this

3

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Installing PETGUI

• Although PETGUI could run under Linux or MacOS, the
native tool libraries that are currently used are Windows
binaries. As such, PETGUI is configured currently to run
under Windows.
• Given research interest and partnership, a version of PETGUI for

LINUX can be developed and released

4

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Running PETGUI
• For developers, the PET Javadoc API

can be found in a separate ZIP
download.

• A default JVM is provided, so no prior
Java installation is required.

• Several folders are provided with
samples, testcases, and reference
component and library circuits.

• Because some tools that are used by
PET are in native Windows format and
there are no pure Java alternatives to
them, PET is configured to run on
Windows. The tooloutputs is used as
temporary folder for several file-based
operations used by Espresso, misII,
and ABC.

• This folder can be emptied on a regular basis

• PET is distributed as an executable
JAR compatible with pre-Java 16
environments. A Batch file is provided
to run the JRE from the provided
folder.

5

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Overview

• Supports basic research into adversarial analysis and
obfuscation of logic circuits

• GUI provides visible functionality for research and
experimentation

• Over 15 years of research
• Master’s student research code
• Code base underwent refactoring 2012-2016

• Provides visualization support for experiments and
studies in polymorphic variation and circuit protection

• Provides basic functionality for logic circuit design and
analysis

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Some Research Lineage 7

2006
FSU

2008
AFIT

2009

2010

2017
USA

2019

Enhanced Mobile Agent Security (McDonald)

Algorithms for White-box Obfuscation Using Randomized Subcircuit Selection and Replacement (Norman)
Obfuscation Framework Based on Functionally Equivalent Combinatorial Logic Families (James)
Software Obfuscation with Symmetric Cryptography (Lin)
Sub-Circuit Selection and Replacement Algorithms Modeled as Term Rewriting Systems (Simonaire)

Characterizing Component Hiding Using Ancestral Entropy (Williams)
Removing Redundant Logic Pathways in Polymorphic Circuits (Kim)

Deterministic Component Hiding Using Identification and Boundary Blurring Techniques (Parham)
Deterministic, Efficient Variation of Circuit Components to Improve Resistance to Reverse Engineering (Koranek)

Digital Logic Protection Using Functional Polymorphism (Forbes)

Analyzing Program Protection Using Software Based Hardware Abstraction (Manikyam)
Deterministic Polymorphic Circuit Generation Using Boolean Logic Representation (Stroud)

1 UG Thesis
9 Masters Theses
2 Doctoral Theses

3 Grants (AFOSR, AFIT, AFRL)
5 Journal Articles
22 Conference/Workshop Papers
9 Workshops ~

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Tool Interfaces

• PETGUI uses the following tool interfaces (see the
Appendix for more information on each tool)

• ESPRESSO version #2.3 (native C binary) – synthesis

• misII release #2.2 (native C binary) – synthesis

• ABC version 1.01 (native C binary) – synthesis

• JDD build 104, Feburary 2012 (fully Java) – BDD

• Z3 (Java, with Windows DLL) – SAT solver

• SATGraf version 0.2 (fully Java) – SAT visualization

• Sat4J (fully Java) – SAT solver

• yFiles v2.11.0.2 (fully Java) – graph visualization

8

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Native format: bench

• PET uses ISCAS BENCH format as the native format for
logic circuit netlists

5 inputs
2 outputs
0 inverters
6 gates (6 NANDs)

INPUT(1)
INPUT(2)
INPUT(3)
INPUT(6)
INPUT(7)

OUTPUT(22)
OUTPUT(23)

10 = NAND(1, 3)
11 = NAND(3, 6)
19 = NAND(11, 7)
16 = NAND(2, 11)
22 = NAND(10, 16)
23 = NAND(16, 19)

= comment
Can appear anywhere

End of line or whole line

INPUTS:
In MSB ordering

At least 1

OUTPUTS:
In MSB ordering

At least 1

INTERMEDIATE GATES:
GATE-ID1 = GATE-TYPE (GATE-ID2, GATE-ID3, …)

String or Integer ID supported
Multi-fanin supported

A distinguished
intermediate
GATE-ID

Use *.bench.txt for all file BENCH file extensions

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

BENCH Gate Types
• Basic Types

• INPUT
• OUTPUT
• AND
• NAND
• OR
• NOR
• XOR
• NXOR (XNOR)
• NOT
• BUFFER (BUFF)

• Extended types
• Constants

• CONST0
• CONST1

• Sequential gates:
• DFF
• JKFF
• SRFF
• TFF

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Basic Rules for BENCH Netlists

• At least 1 INPUT
• At least 1 OUTPUT

• No more than 1
CONST0

• No more than 1
CONST1

• String gate names are
case-sensitive

INPUT(1)
OUTPUT(1)

INPUT(3)

OUTPUT(3)
OUTPUT(1)
OUTPUT(2)

CONST1(2)
CONST0(1)

INPUT(1)
input(B)

#comment
output(3)

gate1 = aND(1,B)

#comment
GATE1 = AND(1,gate1)
gATe1 = or(gate1,GATE1)
3=xnor(gate1,gATe1) # end of line comment

#comment

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

PET Graphical user interface

Circuit
Information
and
Visualization

BENCH and
functional
panels

Console

Primary Menu

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Main Menu 13

File:
New
Open:
1) BENCH
2) DIMACS
3) PLA
Close/Close All
Save/Save As/Save All
Export

Edit:
Copy/Cut/Paste
Undo/Redo

BENCH operations:
Compile (validate)
View Graph/Schematic/Image
Simulate
Truth/State Table and State Diagram
MROBDD/Binary Decision Diagrams
Implicants/Terms
KMAP
Canonical formulas
Functional Equivalence (TT, BDD, ABC)

Generate
from

BENCH:
PLA

VHDL
UW

BLIF
misII
ABC

z3
DIMACS

Transforms:
Concat
Merge
Merge Common Input
Decompose mutli-fanin
Decompose XOR
Decompose function
Transform Basis
Transform SOP/POS/RSE/AIG
Transform Espresso
Transform misII
Transform ABC
Transform Tseytin

Circuit Builders:
1) Canvas
2) TT
3) Equation

Utilities:
Permutation Circuits
Random Circuit
Selections
IO Permutations
ABC Console

Components:
Circuit Partitioner
Subgraph Enumeration
Semantic Component ID
Structural Component ID
Module Library

Obfuscating Variations:
Iterative Selection/Replacement
Boundary Blur
Component Fusion
Component Encryption
Program Encryption
Polymorphic Gates
Logic Encryption

Reductions:
Equational Reducer
Circuit Reducer
Structural Pattern Reducer
Shaped Pattern Reducer
Pattern Viewer
Pattern Finder

Library Circuits
Basic components
- Gates
- Adders/Subtractors
- Multipliers
- Decoders
- Encoders
- MUX/DEMUX
- Comparators
- Polygates

ISCAS-85
ISCAS-89
ITC-99
PLA
BLIF

CIRCLIB:
Static circuit library
and analysis

Unimplemented/TBD

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Basic UI Functionality for Circuit Analysis

• Load/edit/create text BENCH files
• Compile combinational / sequential
• View circuit graph / generate circuit images
• Generate truth tables

• Input Vectors for large input sizes
• Generate reduced minterms/PLA/BLIF formats
• Generate KMAP
• Generate structural VHDL and equational Verilog
• Generate binary decision diagrams (BDT, OBDD,

ROBDD, MROBDD)
• Generate Boolean expression trees and formula
• Generate canonical standard forms
• Simulate circuit execution
• Perform cryptographic Boolean function analysis

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Cases 15

1. Load and Analyze BENCH File
2. Create New BENCH File (Text)
3. Create New BENCH File (Visual)
4. Create New BENCH File (Truth Table)
5. Create New BENCH File (Equation)
6. Create/load a Pre-defined BENCH

Component
7. Export a BENCH File in Different

Formats
8. Transform BENCH File into Different

Forms
9. Analyze Subcircuit Component

Information
10. Analyze Cryptographic Boolean

Properties
11. Perform Polymorphic Circuit

Transformations
12. Reduce a Circuit
13. Generate and Analyze Random

Circuits
14. Load and Convert PLA File
15. Load and Convert DIMACs File

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case 1 Scenarios: Load and Analyze BENCH File
• Opening BENCH file
• Compiling (syntax checking)
• View Graph
• View Image
• View Schematic
• Generate truth table
• Generate implicants
• Generate binary decision diagrams (BDDs)
• Generate Boolean expression trees
• Comparing equivalence: Truth table, BDD, ABC
• Generating PLA
• Generating UW formats
• Generating VHDL
• Generating BLIF
• Generating misII information
• Generating ABC functions
• Generating z3 Model
• Generating DIMACS Model
• Generating KMAP
• Generating Normal Form equations (DNF, CNF, ANF)
• Simulating the circuit

16

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

1. File->Open->BENCH File

Sample circuit directory included

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

2. BENCH->Compile Combinational (Cntrl+B)

You must know whether the BENCH file is sequential or not:
Has loops and/or contains FF gates

Right click for text
panels: you can
save any text to a file,
do standard copy or
cut/paste for editable
text panels

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

On successful compile: statistics are displayed

Compile errors appear in the Console

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

3. BENCH->View Graph

Zoom in / Zoom out

Fit+Recenter

Save Image
Print

Graph layout options

Node Gate Key

General color scheme:
Light = positive logic
Dark = negative logic

Mouse scroll wheel = zoom in/out
VisualGraph

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

4. BENCH->View Image

Graph
layout type

Show gate ID or gate
Name in image

Common layout options

Custom
height/width
OR
Fit to window

Layout
options per

type

ALSO, open in
a dialog
window

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

Basic Layout Types:

Hierarchical Organic Circular

Right click support for
image panels to save to file

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

5. BENCH->View Schematic
Mouse scroll wheel = zoom in/out

1. Choose orientation (HOR/VER)
2. Click Change

1. Click Full to bring up a full-
size image

2. Right-click to save image
from dialogue

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

6. BENCH->Generate Truth Table

Semantic Truth Table:
Show only inputs and output

Full Truth Table:
Show inputs, outputs, intermediate gate values

Input Vector: if selected, generates
only a partial number of inputs and
shows only those outputs (and
intermediate results)

Number of input vectors:
<= 2n, n = # inputs

NOTE: This generation is
O(2n) as it is based on all
truth table rows, unless
input vectors are used

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

Truth Table: FULL, with input vector set
INTERMEDIATE gate signals

34 ---> OUTPUT(31)
35 ---> OUTPUT(25)
36 ---> OUTPUT(33)

MSB: The first INPUT designation corresponds to the first
INPUT bit of the truth table

MSB
OUTPUT ports do not show up in BENCH text

One set of INPUT
values, corresponding
intermediate gate
values, and circuit
OUTPUT values

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

Input Vector

Truth Table tab
Input Vector tab

Vectors used to
generate truth table

Right click for text panels: you can
save any text to a file, do standard copy
or cut/paste for editable text panels

Prime Implicants

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

7. BENCH->Implicants/Terms

Prime Implicants Tab

Standard tabular
format produced by
ESPRESSO
reduction

Function

TT

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

8. BENCH->MROBDD
Multi-Rooted Binary Decision Diagram

Outputs NOTE: This method generates
BDDs based on the JDD toolkit
and derives structure based on
the circuit structure itself, not
the truth table

This option can handle circuit
with input > 30, but realistically
less than 40

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

9. BENCH->Decision Trees
4 Main Types:

Per Single Output (must be chosen):
1-Binary Decision Tree
2-Binary Decision Diagram (BDD)
3-Reduced Ordered BDD (ROBDD)

Shows all Outputs:
4-Multi-Rooted ROBDD (MROBDD)

NOTE: This approach is O(2n) as
it is based on the full truth table,
but is useful for illustrating BDD
reduction on smaller functions

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

Decision Tree Types:
Note: for >5 inputs, these diagrams may be extremely large

Binary Decision Tree
(BDT)

for OUTPUT(31) / Index 0

Zoom, Magnifier, Save Image, and Print options

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

Decision Tree Types:

Binary Decision Diagram
(BDD)

for OUTPUT(31) / Index 0

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

Decision Tree Types:

Reduced Ordered Binary Decision Diagram
(ROBDD)

for OUTPUT(31) / Index 0

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

Decision Tree Types:

Multi-Rooted Reduced Ordered
Binary Decision Diagram (MROBDD)

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

10. BENCH->Boolean Expression Tree

This string can be used in Logic Friday (copy/paste)

Standard Boolean
logic equation

Boolean expression
tree of equation for
circuit, based on
gates

NOTE: This
method will
be refactored
eventually to
use ABC for
factoring and
equations

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

11. BENCH->Compare TT

Specify another
BENCH file to
compare semantic
equivalence to

Can use input vector
(partial) truth table
for comparisons: for
larger circuits, you
can generate a new
random vector set

Specifying the same
circuit should
obviously always be
equivalent

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

12. BENCH->Compare BDD

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

13. BENCH->Compare ABC

Names may affect equivalence
based on permuted input/output

Same comparison circuit
Ignore Names = true Ignore Names = false

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

14. Generate ->Generate PLA

Standard
ESPRESSO
(unreduced)
PLA format

Form

PLA

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

15. Generate ->Generate VHDL

Structural VDHL
(loadable into
synthesis tool)

Form

VHDL

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

16. Generate ->Generate UW

University of
Wisconsin input-
oriented format

Form

UW

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

17. Generate ->Generate BLIF (Espresso)

Standard BLIF
format (reduced
ESPRESSO) -
Berkeley Logic
Interchange
Format

Form

BLIF

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

18. Generate ->Generate misII

Standard MisII
format: Multiple-level
Combinational Logic
Optimization
Program

Technology mapping
is standard BENCH
gates with 2-4 fanin

Form

misII

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

19. Generate ->Generate ABC
See ABC documentation at: http://people.eecs.berkeley.edu/~alanmi/abc/

Information Options

http://people.eecs.berkeley.edu/%7Ealanmi/abc/

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

19. Generate ->Generate ABC
See ABC documentation at: http://people.eecs.berkeley.edu/~alanmi/abc/

BLIF Synthesis Options

http://people.eecs.berkeley.edu/%7Ealanmi/abc/

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

19. Generate ->Generate ABC
See ABC documentation at: http://people.eecs.berkeley.edu/~alanmi/abc/

PLA / Verilog Options

http://people.eecs.berkeley.edu/%7Ealanmi/abc/

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

19. Generate ->Generate ABC
See ABC documentation at: http://people.eecs.berkeley.edu/~alanmi/abc/

BENCH Generation Options

http://people.eecs.berkeley.edu/%7Ealanmi/abc/

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

19. Generate ->Generate ABC
See ABC documentation at: http://people.eecs.berkeley.edu/~alanmi/abc/

Custom Script

Requires a read statement….

Used with write options to output file
formats after network operations are
applied

http://people.eecs.berkeley.edu/%7Ealanmi/abc/

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

19. Generate ->Generate ABC

Output is dependent
on dialogue options

Form

ABC

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

20. Generate ->Generate z3
49

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

• Z3 is a SAT solver and generating a model implies that the
circuit will be transformed into a form in which the solver can
use

• Finding a model means that it will attempt to find an
assignment of values (to the input variables) that will produce a
true (1) output

• The solver is geared currently to analyze point-function circuits
that represent password-checking functions
• If you know the circuit takes as input an actual ASCII character

sequence and produces a single output (true if password matches,
false others), then choose Yes

• Otherwise, choose No, z3 will produce a model for any circuit, whether
it is a point-function circuit and whether or not the input is assumed to
be ASCII character sequences

50

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File 51

z3 Model

Output Function (can support multiple outputs)

Model result (if there is one)

If the option dialog for point-
function password circuit was YES,
the binary model is automatically
converted to an ASCII character
sequence (assumes every 8 bits =
1 ASCII character)

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

21. Generate ->Generate DIMACs
• DIMACs format is a standard representation method for CNF/POS formulas
• Any POS/POM form circuit can be readily translated into a DIMACS format
• Only supports SINGLE output functions

52

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

21. Generate ->Generate DIMACs
53

If the circuit is synthesized
as a Product of
Sums/Product of
Maxterms structure,
choose YES

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

21. Generate ->Generate DIMACs
54

DIMACs text

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

21. Generate ->Generate DIMACs
55

If the circuit is NOT
synthesized as a Product
of Sums/Product of
Maxterms structure,
choose NO

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

21. Generate ->Generate DIMACs
56

Option is given to
transform the circuit via the
Tseytin algorithm

1) Choosing NO exits
2) Choosing YES will

continue the DIMACs
generation

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

21. Generate ->Generate DIMACs
57

Next option allows saving
of the Tseytin transformed
BENCH file to be saved to
disk

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

21. Generate ->Generate DIMACs
58

Once DIMACs text is
generated, right-click in the
text pane and choose
Save As to write DIMACs
out to its own file

Use .cnf or .cnf.txt
extension name for
reloading into PETGUI

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Analyzing BENCH File

22. BENCH ->Karnaugh Map
KMAP Tab

For each output

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

22. BENCH ->Karnaugh Map
Use Case: Loading and Analyzing BENCH File 60

View MINTERM/MAXTERM
or BOTH

Export KMAP (for the
selected output) as Text or
Image file

Browse to select export file,
then select EXPORT

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

23. BENCH ->Formula->{DNF,CNF,ANF}
Use Case: Loading and Analyzing BENCH File 61

Function

Formula

DNF/CNF/ANF

Wrap Text

Conjunctive
Normal Form
(CNF)

Algebraic
Normal Form
(ANF)

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

24. BENCH ->Simulate
Use Case: Loading and Analyzing BENCH File 62

Use this for large input size
circuits: it will generate

random test vectors

To continue…

SIM Tab

Test Vectors:
Selecting one
of these input
vectors will

simulate each
gate in the
circuit and
show the

circuit output
in the Output

text field

Use test vectors (IV)

Circuit Output

For Use Custom
Vector: enter binary

string here

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

24. BENCH ->Simulate
Use Case: Loading and Analyzing BENCH File 63

Circuit Output

IV Selected

IV Selected

INPUT = 111

Gate output = 0

Gate output =

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

64

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case 2: Create New BENCH File (Text)

1. File -> New -> BENCH File
Browse to a path and provide a filename

2. Edit text in the text pane, entering a valid BENCH netlist

3. File -> Save, to save edits

4. File -> Save As, saves current contents to new file

5. File -> Close, closes the text edit panel

65

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

66

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case 3: Create New BENCH File (Visual)

• Build -> From Circuit Builder
67

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case 3: Create New BENCH File (Visual)

1: Select gate type from palette (left click)

2: Left-click on canvas to
drop a gate

3: Connect gates: left-click AND hold on a source gate,
drag, then release on a target gate

4: Click “Validate”: errors are reported, otherwise Validated
checkbox becomes selected

68

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case 3: Create New BENCH File (Visual)
• Left-click on gate = selects it, for moving/replacement
• Left-click on wire = selects it for adding bends
• Left-click on canvas = no current selection, adds a gate to the canvas
• Left-click on canvas = if a gate is selected, deselects any gate/wire

• Use cut/delete on selection to get rid of
• Use undo/rundo

NOTE: Copy/paste functionality does not work fully in Release 1.0

5: Click BROWSE to select a path and filename for the BENCH file to be
saved

IF circuit is validated AND BENCH path has been chosen,
SAVE BENCH button is enabled and will write the file

Check “Load in Panel” to also load the bench file into a text panel on save

Any changes to circuit will invalidate the circuit and you will need to
revalidate it

69

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case 3: Create New BENCH File (Visual) 70

Use to do a quick layout
format on graph

Clear canvas Delete or cut gate/wire Undo/Redo

Zoom in/out and fit Print/save image

<== Layout options

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case 3: Create New BENCH File (Visual) 71

Validate circuit Explicitly set the ordering of inputs and outputs

Save the circuit to the selected file

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

72

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case 4: Create New BENCH File (Truth Table)

• Build -> From Truth Table
73

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case 4: Create New BENCH File (Truth Table)

1: Select input and output size of truth table

2: Click Create Truth Table

74

Select Number of Inputs/Outputs

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case 4: Create New BENCH File (Truth Table) 75

Click on a table cell to set the
output of that function to 1 for

that input sequence

3: Specify Truth Table

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case 4: Create New BENCH File (Truth Table) 76

Once functional values are
finalized, click Finalize Truth

Table

4: Finalize Truth Table

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

5: Pick which circuit form, then Generate Circuit

6: BENCH generated: browse for save file/select load in
Panel

Use Case 4: Create New BENCH File (Truth Table) 77

Circuit form, then generate

Circuit Tab

BROWSE for
BENCH file

location/name

Loads BENCH file in
the GUI panel when

it is SAVED

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

7: Once BENCH file is selected, click SAVE BENCH

8: If Load in Panel selected, BENCH text panel for file will
appear as well

Use Case 4: Create New BENCH File (Truth Table) 78

BENCH Text panel
tab

Still much do
BENCH->Compile

Combinational

Then BENCH->View
Graph to see

created circuit

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

79

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case 5: Create New BENCH File (Equation)

• Build -> From Equation
80

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case 5: Create New BENCH File (Equation) 81

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case 5: Create New BENCH File (Equation) 82

1) Enter equation

2) Check

Syntax of the entered
equation in BENCH form
after Check

For valid formula

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case 5: Create New BENCH File (Equation) 83

Parse of the entered
Boolean formula

Truth table of entered
Boolean formula

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case 5: Create New BENCH File (Equation) 84

3) Choose synthesized circuit form

Synthesized BENCH from
truth table after Generate

4) Click Generate Circuit

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case 5: Create New BENCH File (Equation) 85

5) BROWSE and pick
filepath for BENCH file 6) Click Load in Panel

to load saved BENCH
in panel tab

7) Click SAVE BENCH
to write out BENCH

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case 5: Create New BENCH File (Equation) 86

8) After SAVE BENCH and load
in panel, new BENCH tab
appears:

then do BENCH->Compile
Combinational from menu

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

87

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case 6: Create a pre-defined BENCH component

• Libraries -> Basic Components -> …
• Browse and choose a file to save to

88

Example: Full Adder (3-2)

INPUT(4)
INPUT(5)
INPUT(6)

OUTPUT(8)
OUTPUT(7)

1=XOR(4,5)
3=AND(4,5)
8=XOR(1,6)
2=AND(1,6)
7=OR(2,3)

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case 6: Create a pre-defined BENCH component

• Libraries -> Basic Components -> …
89

Example: 4-bit Multiplier

Then:
BENCH->Compile Combinational
BENCH-> …

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case 6: Create a pre-defined BENCH component
• Basic Gates (2 – 4 input)

AND
OR
XOR
NAND
NOR
NXOR
BUFFER
INVERTER

• Adders
• Subtractors
• Multipliers

• Decoders
• Encoders

• Multiplexors
• Demultiplexors

• Comparators

• Flipflops

• Polygates

90

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case 6: Create a pre-defined BENCH component

• ISCAS-85 Benchmarks (combinational)

• ISCAS-89 Benchmarks (sequential)

• ITC-99 Benchmarks (sequential)

91

b02 ITC-99 benchmark schematic

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

92

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case 7: Export a BENCH File from Text Panel in Different Formats

• File -> Export
• BENCH
• Image
• Truth Table
• Logic Friday (CSV) Truth Table
• GraphML
• VHDL
• UW
• BDD

93

University of Wisconsin format

Native format for yEd

Image format

Image format

Text format

Extended options

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

94

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

95

Major Transforms:
Concat
Merge

Merge Common Input

Decompose Multi-fanin
Decompose XOR

Decompose Function

Transform Basis / Random Basis

Transform SOP/POS/RSE/AIG
Transform SOM/POM/ReedMuller (reduced)

Transform Espresso / Espresso Canonical Forms
Transform misII
Transform ABC

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Transforms 96

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Transforms: Concatenate 97

Example:
Ideal concatenate where
of outputs = # of inputs

Original (A)

Circuit to Concatenate (B)

New Concat Circuit

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Transforms: Concatenate 98

What to do with these 2 outputs?
Specify Pad Options

Example:
Created with Pad Option =
Use Random Method

Original (A)

Circuit to Concatenate (B)

New Concat Circuit

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Transforms: Concatenate 99

What to do with these 3 inputs?
Specify Fill and Pad Options

Example:
Created with Pad Option =
Pad Random Gate from Output Level + 1 from A
Fill Options: Append Bits to B

Original (A)

Circuit to Concatenate (B)

New Concat Circuit

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

100

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Transforms: Merge 101

MSB Append LSB Append

Original (A) Circuit to Merge (B)

New Merge Circuit

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

102

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Transforms: Merge Common Input 103

Original (A) Circuit to Merge (B)

Merges two circuits with the same # of
inputs:

The inputs are assumed to be symmetrical
for both circuits (A and B)

The merge attempts to match the fan-in of
gates and gate types of the circuit to merge
with the fan-in gates and gate types of the
original

Resulting circuit will have the same # of
inputs and output size equal to |outputs A| +
|outputs B|

Produces a circuit with functionally
equivalent outputs as that of A and B,
using the same inputs space as A and BNew merge circuit

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Transforms: Merge Common Input 104

Original (A) Circuit to Merge (B)

New merge circuit

These gates have
identical type and
input fan-in as those
of the original (A)

New circuit is renumbered…

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

105

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Transforms: Decompose Multi-Fanin 106

INPUT(1)
INPUT(2)
INPUT(3)
INPUT(4)
INPUT(5)
INPUT(6)
INPUT(7)
INPUT(8)

OUTPUT(11)
OUTPUT(12)

9 = AND(1,3,5,7,8)
10 = OR(2,4,6)
11 = XOR(9,10,1,8)
12 = NAND(10,1,3)

INPUT(0)
INPUT(1)
INPUT(2)
INPUT(3)
INPUT(4)
INPUT(5)
INPUT(6)
INPUT(7)

OUTPUT(18)
OUTPUT(15)

8=AND(0,2)
9=OR(1,3)
10=OR(5,9)
11=AND(4,8)
12=AND(6,11)
13=AND(10,0)
14=AND(7,12)
15=NAND(2,13)
16=XOR(14,10)
17=XOR(0,16)
18=XOR(7,17)

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

107

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Transforms: Decompose XOR 108

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

109

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Transforms: Decompose Function 110

Decomposes a circuit
by functional output:
one circuit is
produced for each
output, keeping
appropriate gates
from original circuit

To keep the original
number of inputs,
check “Preserve
Inputs”

Output 22

Output 23

Decomposed
file names are
automatically
assigned based
on circuit name

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Transforms: Decompose Function 111

Decomposes a circuit by functional
output: one circuit is produced for each
output, keeping appropriate gates from
original circuit

To keep the original number of inputs,
check “Preserve Inputs”

With “Preserve Inputs”

Generates
logically
redundant
gates…

Generates
logically
redundant
gates…

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Transforms: Decompose Function 112

Decomposes a circuit by functional
output: one circuit is produced for each
output, keeping appropriate gates from
original circuit

To keep the original number of inputs,
check “Preserve Inputs”

Without “Preserve Inputs”

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

113

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Transforms: Transform Basis 114

Transforms each gate into a NAND-only or
NOR-only representation:

For NAND-only, NAND gates are obviously
left unchanged and the same applies for
NOR-only and NOR gates

Options:

Use Redundant Input
Use Inverters
Use Constant Gates

These options allow for inverters or constant
gates to be generated in the transform.
Redundant inputs means that a gate can have
more than one fan-in from a predecessor
gate.

Transform NOTs: means that NOT gates will
be transformed into equivalent NAND- or
NOR-only forms

Transform BUFFERs: means that BUFFERS
will be transformed into an equivalent NAND-
or NOR-only form

NOR
transform
with no
options

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Transforms: Transform Basis 115

NOR transform with various
options

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

116

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Transforms: Transform Random Basis 117

Transforms each gate into a NAND-
only or NOR-only representation,

but choose randomly which
transform to use…

INPUT(1)
INPUT(2)
INPUT(3)
INPUT(4)
INPUT(5)

OUTPUT(8)
OUTPUT(9)
OUTPUT(10)

6 = AND(1,2,3)
7 = OR(4,5)
8 = XOR(6,7)
9 = NOR(1,8)
10 = NAND(2,8)

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Transforms: Transform Random Basis 118

INPUT(1)
INPUT(2)
INPUT(3)
INPUT(4)
INPUT(5)

OUTPUT(8)
OUTPUT(9)
OUTPUT(10)

6 = AND(1,2,3)
7 = OR(4,5)
8 = XOR(6,7)
9 = NOR(1,8)
10 = NAND(2,8)

Random
basis
transforms

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

119

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Canonical Transformations 120

Example: 2-bit adder

INPUT(1)
INPUT(2)
INPUT(3)
INPUT(4)
INPUT(5)

OUTPUT(16)
OUTPUT(10)
OUTPUT(17)

6=XOR(1,3)
7=XOR(2,4)
9=NOT(7)
10=XOR(5,7)
11=AND(5,7)
8=NOT(6)
12=AND(3,8)
13=AND(4,9)
14=OR(11,13)
15=AND(14,6)
16=XOR(14,6)
17=OR(15,12)

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Transforms: Sum of Products 121

Transforms a circuit into its Sum-of-
Products (unreduced) equivalent 2-

level circuit representation

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Transforms: Product of Sums 122

Transforms a circuit into its Product-
of-Sums (unreduced) equivalent 2-

level circuit representation

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Transforms: Ring Sum Expansion 123

Transforms a circuit into its Ring Sum
Expansion [RSE] (unreduced)

equivalent 2-level circuit
representation

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Transforms: And Inverter Graph 124

Transforms a circuit into one possible
And-Inverter Graph [AIG] (unreduced)

equivalent representation

AIGs are not necessarily
canonical

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Transforms: Reduced Canonical Forms 125

Sum-of-Minterms (reduced SOP)
Product-of-Maxterms (reduced POS)

ReedMuller (reduced RSE)

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Transforms: Espresso 126

Transforms a circuit based on its
Espresso reduction (SOP factors) and

equivalent BENCH

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Transforms: Espresso Canonical Forms 127

Transforms a circuit based on its Espresso
reduction and equivalent BENCH

There are 8 possible synthesis options
based on SOP/POS and basis gate type

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Transforms: Espresso Canonical Forms 128

SOP-AND

SOP-OR SOP-NOR

SOP-NAND

ORIGINAL

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Transforms: Espresso Canonical Forms 129

POS-AND

POS-OR POS-NOR

POS-NAND

ORIGINAL

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Transforms: misII 130

Transforms a circuit based on its misII
reduction (SOP factors) and

equivalent BENCH

Gates are mapped according to the
pet.genlib technology map

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Transforms: ABC 131

Transforms a circuit based on its ABC synthesis and equivalent BENCH
9 different synthesis scripts in ABC…

RESYN RESYN-2 RESYN-2A RESYN-2RS

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Transforms: ABC 132

Transforms a circuit based on its ABC synthesis and equivalent BENCH
9 different synthesis scripts in ABC…

RESYN3

COMPRESS COMPRESS2

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Transforms: ABC 133

Transforms a circuit based on its ABC synthesis and equivalent BENCH
9 different synthesis scripts in ABC…

CHOICE CHOICE2

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

134

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

135

Components:

Circuit Partitioner
Subgraph Enumeration

Semantic Component Identification
Structural Component Identification

View Module Library

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Circuit Partitioner 136

Pick the # of partitions first, then
select RESET PARTITIONS Once partitions are chosen with gates

associated with each partition, Select a
partition file to save it in, then choose Export

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Circuit Partitioner 137

Once all gates are assigned to at
least 1 partition, and all partitions

have at least 1 gate, there is a valid
partitioning of the circuit gate set

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Circuit Partitioner 138

With save file Selected and Exported, a text file
will contain the partition information

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Subgraph Enumeration 139

Can be used to save
enumerations for later
use in component
identification

Green = INPUTS to component
Yellow = INTERMEDIATE gates
Red = OUTPUT ports of component

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Subgraph Enumeration

• 7 different algorithms for enumeration=>
• Relax containment: algorithms can required a

component to be fully contained

• Generation options:

• All subgraphs OR limit enumeration to subgraphs of
a given size (size includes inputs, outputs, and
intermediate nodes of represented subcircuit)

• Maximum recursion depth: for certain algorithms,
used to control the amount of recursion for exploring
subgraphs from a given starting node

140

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Semantic Component Identification 141

Use a pre-generated enumeration file instead of
enumerating from scratch

All matched
components from
Module Library

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Semantic Component Identification 142

Module Library: use the default module library
provided with PET or create your own version

Limit the components that are matched by I/O size:
• If checked: provide an INPUT/OUTPUT size
• All components with these sizes OR LESS will be compared
• Strictly equal: compare components with EXACTLY the

INPUT/OUTPUT size specified

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Semantic Component Identification 143

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Constraints
• Subgraph enumeration is N!, where N is size of circuit

• So… ALL enumeration algorithms return approximations of total subgraphs that
have the best potential to be a valid subcircuit component

• The LARGER the starting circuit, the LARGER the # of subgraphs enumerated:
memory and time tradeoffs begin to occur around 100K subcircuits

• Component identification is constrained by time and the # input/output
size of the components being compared from the Module Library
• Each enumerated subgraph is compared against a component from the library

with a matching input size and output size
• The match process generates all possible combinations of input ordering with

all possible combinations of output orderings
• This results in an X! * Y! number of combinations, where X is input size and Y

is output size of the component being compared against
• Therefore, components with about 6 or 7 inputs will take longer for any given

comparison

• Based on the current implementations, it may be likely you will run
into Java heap space or GC overhead limit exceptions

• Even with adequate RAM and specification of JVM options to utilize
the space, time becomes the limiting factor for experiments

144

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Structural Component Identifier

• Structural identification is much like semantic identification
in terms of options:

• Subgraphs are enumerated using a standard enumeration
algorithm (1 of 7 must be selected)

• Identification involves finding common structures (not tied
to any specific known component)

145

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Structural Component Identifier 146

Structural components
sorted by input/output size

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

View Module Library 147

Module library is specially formatted directory with components used in
components identification experiments: components are arranged by
input/output size and are defined as BENCH circuits

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

148

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Cryptographic Boolean Properties 149

First: Load or create BENCH file with < 4 inputs

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Cryptographic Boolean Properties 150

BENCH->Crypto Analysis->Properties from main menu

Algebraic Normal Form of signature

Inverted Algebraic Normal Form of signature

Function Signature (output column of truth table)

of Variables / # of Vectors (2^n) / # of functions in family (2^(2^n))

Walsh Hadamard Transform

Constant Zero or Constant One
Negated
Linear
Monotonic
Balanced
Affine
Bent

% Probability of 1 output
% Probability of 0 output
Hamming Weight
Bias
Algebraic Degree
Nonlinearity

Function Properties

Algebraic Immunity

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Cryptographic Boolean Properties 151

For n=4 inputs, AI has
to be explicitly
computed

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Cryptographic Boolean Properties 152

Select another BENCH file to compare
hamming distances of functions and
rankings of signature (<, ==, >)

Supports BENCH with multiple
outputs, will compare each
independently

If the BENCH has multiple outputs,
each output function gets its own
properties and correlation tab

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Cryptographic Boolean Properties 153

BENCH->Crypto Analysis->Correlation from main menu

of Variables / # of Vectors (2^n) / # of functions in family (2^(2^n))

Algebraic degree, Max Walsh Coefficient, ANF of function

Correlation: Select Order, then click Compute

Annihilators
Count

Functions Less Than
Count

Affine Functions in Family
Count / Minimum Distance to Affine Functions

All Functions in Family
Count

Output function of BENCH

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

154

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

155

Circuit Variations:

• Iterative Selection/Replacement
• Random Circuit
• Random Boolean Logic Expansion

• Deterministic
• Boundary Blur
• Component Fusion
• Component Encryption

• Program Encryption
• Polymorphic Gates
• Logic Encryption
• Insert AND Tree

• Utilities->Permutation Circuits

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Variation Techniques

• Random variation techniques may (or may not) hide certain
design information

• Deterministic variation techniques are geared at hiding
components
• Boundary Blurring
• Component Fusion
• Component Encryption

• Some variation techniques can hide the complete design
elements of a circuit
• Virtual Black Box (Synthesis)
• Polymorphic Gates / Functional Polymorphism

• Some variation techniques can hide the full function of a
circuit, if the circuit input size is small enough
• Program Encryption

156

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Structural Polymorphism

• Structural Polymorphic generation is easy…
• ONE FUNCTION, MANY FORMS…
• Combinational logic = straight-line program code / basic blocks

157

P P’1

P’2

P’3

P’4P’5
…

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

158

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Iterative Selection/Replacement

• Three primary options:
• Iteration based
• Round based
• Size based

159

Random Circuit Generation

CIRCLIB Library Selection

These options currently ALL use
random circuit generation for the
replacement step

One “Iteration”

Round: when all gates
of a circuit have been
replaced through
selection/replacement
operationsFinalOriginal Variants

RBLE Generation

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Picking a Random Circuit with Function f()

• The problem: Given a circuit Csub, pick a suitable
replacement Crep for it from the same family (same
input/output size), but with larger (or smaller) gate size,
and that does the same function as Csub (semantic
equivalence)

• If we limit Csub to be small (in gate size), we could
iteratively repeat this process of selecting and replacing
subcircuits in a larger circuit C

160

Iterative Sub-Circuit
Selection and

Replacement (ISR)

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Iteration Based

• Create a variant based on a fixed # of iterations
(selection/replacement increments)

161

A BENCH file in a text panel
must be selected as the active
circuit, which is the starting
point for the polymorphic
variation

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Iteration Based

Basic walk-through: after picking # of iterations

1. Pick a general selection algorithm type: where or how
gates are selected within the circuit

Simple Polymorphic (uses random gate)
Random Level
Output Level
Largest Level
Smallest Level
Fixed Level

2. Show variants and increment #: Create a panel that
shows the BENCH and graph of the variant within the GUI.
Displays variants based on increment # (i.e., every 1, every
2, every 5, every 10, etc.)

162

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Iteration Based

Basic walk-through:

3. Choose an experiment directory (BROWSE)
Original, final, and incremental files will be placed in here

4. Choose whether the original circuit should have
decomposed fan-in gates (fan-in will be 2 for all gates if this
option is selected)

5. Selection Tab: choose a minimum and maximum
selection size (if equal, then only selections of that size are
considered)

6. Selection | Smart Strategy: Smart selection will keep
track of original gates in the circuit and make future
selections from gates that have not been replaced yet

163

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Iteration Based

Basic walk-through:

7. Selection | Use random selection algorithm: can override
the general selection algorithm chosen to pick a random
method each iteration

8. Selection | Maximum selection attempts: based on
available gates for selection and the algorithm chosen, it
may not be possible to select a subcircuit of a given size.

• This is because some selections, when a replacement circuit is
inserted, may induce a cycle in the circuit

• After the max selection attempts are reached, a new selection
strategy is chosen (typically, pick 1 or 2 random gates)

9. Selection | Maximum selection input size: selection size
is normally based on # of gates, but you can restrict how
many inputs a resulting subcircuit can have with this option

164

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Iteration Based

Basic walk-through:

10. Selection | Target Level: only enabled for Fixed Level
selection algorithm

11. Replacement Tab: Replacement size is the primary
driver. For a given selected subcircuit, sets the target size
of the replacement circuit. Based on the random generator,
the size winds up being multiplied per output of the
selected subcircuit. Depending on how many common
inputs the circuit size has, it could be less.

12. Replacement | Basis Set: For replacement circuits, sets
the kind of gates that are allowed in the circuit.

165

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Iteration Based

Basic walk-through:

13. Replacement | Use Smart Random: tells the circuit
generator to weed out circuits with redundant logic (dual
fan-in gates, repeated gates, etc)

14. Replacement | Max Fan-In: tells the circuit generator
how many fan-ins a gate might be allowed

15. Replacement | Max Generation Attempts: if the circuit
generator cannot find a replacement within a certain # of
generation attempts, the algorithm will abandon the
selection and pick a new selected subcircuit (typically
happens with larger input/output size subcircuits)

166

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Iteration Based

Basic walk-through:

16. Verify Tab: has options for verifying variants. For larger
circuits, and Input Vector can be used.

17. Journaling Tab: Saves original, final, and/or
intermediate variant files in the experiment directory

• For variants, increment value specifies how often (how many
iterations) to go before saving files (every 1, every 2, etc).

• Journal options: each time a save is done, which circuit formats
should be saved => BENCH, GraphML, Hierarchical Image,
Organic Image, VHDL, UW format

• File naming is handled automatically

17. Debug Tab: Various options for verbose output to the
console as the generation process is executing

167

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Iteration Based 168

Example: Original Circuit

Options:
12 Iterations
Algorithm: Simple polymorphic
Show Variants: yes, increment = 1
Selection size min/max = 2
No smart selection
Max selection input size = 4
Replacement Size = 7
No Smart Random
Max Fan-in = 2
Basis = NOR, AND, OR, XOR, NXOR, NOT
Journal: Final, Original,

Variant w/ Increment = 1 Annotated graph tracks
original circuit gatesGraph of circuit variant

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Iteration Based 169

Show Variant
tabs:

Final circuit
stats:

Iteration log

Summary of
experiment

Annotated graph
tracks original

circuit gates

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Iteration Based 170

Example: Original Circuit

Options:
12 Iterations
Algorithm: Simple polymorphic
Show Variants: yes, increment = 1
Selection size min/max = 2
No smart selection
Max selection input size = 4
Replacement Size = 7
No Smart Random
Max Fan-in = 2
Basis = NOR, AND, OR, XOR, NXOR, NOT
Journal: Final, Original,

Variant w/ Increment = 1

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Size Based 171

Example: Original Circuit

Options:
Size = 100
Algorithm: Simple polymorphic
Show Variants: yes, increment = 5
Selection size min/max = 2
Use smart selection
Max selection input size = 6
Replacement Size = 8
No Smart Random
Max Fan-in = 3
Basis = NOR, AND, OR, XOR, NXOR, NOT
Journal: Final, Original,

Variant w/ Increment = 1

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Round Based 172

Example: Original Circuit

Options:
Round = 1
Algorithm: Simple polymorphic
Show Variants: yes, increment = 1
Selection size min/max = 2
Use smart selection
Max selection input size = 6
Replacement Size = 8
No Smart Random
Max Fan-in = 3
Basis = NOR, AND, OR, XOR, NXOR, NOT
Journal: Final, Original,

Variant w/ Increment = 1

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Replacement with Random vs RBLE Generation
• Random Circuit Generation:

• Given a subcircuit C, random generation
will take the input/output size of the
subcircuit and generate a random circuit
with that IO size and some gate size

• Randomly generated circuits are
compared against the truth table
(signature) of the input circuit C until
match is found

• Current engine decomposes multi-output
functions and generates a random circuit
for each function

• Single function circuits are merged
backed together to produce the final
replacement circuit

• Random circuit generation is non-
deterministic in terms of generating a
semantically equivalent circuit in a
tractable time limit

• prob(sig(C) == sig(Rx)) related to
statistical distribution of circuits in a family
with a given signature

• Probability of random circuit with matching
signature is of the order, where n is the
number of inputs and m is the number of
outputs:

m(1 / 22^n)

173

Random
Circuit

Generator

Basis (6-GATE)
Inputs: X=5

Outputs: Y=1
Size: S=8

Merge
Circuit

ε1
ε2

ε3

“Polymorphic
Engine”

C5-3-20?

C5-3-5

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Replacement with Random vs RBLE Generation

• Random Boolean Logic
Expansion (RBLE):
• Given a subcircuit C, RBLE will take the

existing circuit structure and express it
as a Boolean logic expression

• Inverse of Boolean logic laws are
applied in some random fashion until
given constraints of the replacement
circuit are met

• Applying logic laws inversely produces
“expansion” vs. “reduction” of the logic
expression

• Expansions are applied repeatedly on
the Boolean logic expression

• Three possible generation policies are
defined
• Fixed: deterministic/most efficient runtime
• Strict Size: nondeterministic/most precise

replacement circuit size
• Target Size: nondeterministic/

174

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

RBLE Example 175

g1 = (i0 * i1)'
1: (0 + (i0 * i1))’
2: ((i1' * 0) + (i1 * i0))’
3: ((i1' * (i0 * i0')) + (i1 * i0))'
4: ((i1' * (i0 * i0')) + (i1 * (i0 * i0)))’
5: ((i1' * (i0 * i0')) + (i0 * (i1 * i0)))’
6: ((i0 * (i1'*i0')) + (i0 * (i1*i0)))’
7: (((i1' * i0') + (i1 * i0)) * i0)’
8: ((i1 ^ i0)' * i0)’

g1 = ((i1 ^ i0)' * i0)‘

Logic
Reduction

Logic
Expansion

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

RBLE Generation Policies

• Fixed: Apply a “fixed” number of expansions
• Deterministic/always returns a variant
• Most efficient/linear runtime
• Size of ISR variant unpredictable

• Strict Size: Apply expansions until a gate size n is
reached
• Non-deterministic/may fail to return a variant (max attempts)
• Requires trials, which increase run-time (max expansions)
• Allows precise ISR size estimation

• Target Size: Apply expansions until a target get size n is
reached or exceeded
• Non-deterministic/may fail to return a variant (max attempts),
• Requires trials, which increase run-time (max expansions)
• Allows more accurate ISR size estimation

176

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

RBLE Options 177

Selection options are the same as for random circuit generation:

Expansion options select FIXED, STRICT, or TARGET

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Running an RBLE Experiment 178

Fill in:
• Setup/Experiment Directory
• Selection/min and max size
• Expansion/Algorithm Type and option value
• Verify and Journal options

Click PERFORM VARIATION
Summary stats
reported at completion

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

179

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Deterministic Variation

• Deterministic algorithms apply a prescribed set of steps
with some elements of pseudo-random choices to achieve
a specific goal

• Goal of these algorithms are towards component hiding
• Defeat algorithms that target semantic identification of

components

• Understanding these algorithms is best done through
review of publications where key aspects and
experimental results of the algorithms have been
disseminated

180

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Deterministic Variation

• Boundary Blurring
• Mutates the type of a gate randomly (for example, from AND to XOR)

to change the expected signature at a component boundary
• Recovery logic is introduced to preserve the original semantics of the

gate signal to other gates that depend on it

• Component Fusion
• Circuit must be partitioned into subcircuit “components”
• In order to work correctly, components must be defined so that original

component boundaries are extended
• Black-box synthesis is performed creating a virtual black box of each

new component

• Component Encryption
• Similar to component fusion: circuit must be partitioned into a set of

component subcircuits
• Boundaries of components are encoded and decoded internally
• An implementation of white-box cryptography, where the circuit is

replaced with an internal network of encoded look-up-tables

181

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Boundary Blurring 182

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Component Fusion 183

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Component Encryption 184

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Component Encryption 185

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Component Encryption 186

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

187

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Program Encryption 188

This option does not require a selected BENCH circuit to be loaded first

5 Step Process:
1) Pick original circuit P
2) Generate

encryption/decryption
circuits E and D

3) Compose P and E
4) Synthesize P + E (P’)
5) Compose P’ + D for

verification

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Program Encryption

• Basic Overview
189

+
8 INPUTS 3 OUTPUTSP EK

Canonical Form
(SOP/POS)

QM Minimization

fP’’

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Summary of Program Encryption 190

+

P

Ek

P”

fP”

P’

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Summary of Program Encryption

• A legitimate user of P’ can reproduce the functionality of P with
the decryption circuit D:

191

P’ D

fP

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Program Encryption: Choose P 192

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Program Encryption: Generate E and D 193

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Program Encryption: Compose P and E 194

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Program Encryption: Synthesize P ‘ 195

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Program Encryption: Concat D to P’ for Verification 196

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

197

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Permutation Circuits 198

This option does not require a selected BENCH circuit to be loaded first

This generates permutation circuits (E), with a
corresponding decryption circuit (D)

E

D

One-to-one and
onto function:

7 bit example

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

199

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Functional Polymorphism

• Functional Polymorphism
• ONE FORM, MANY FUNCTIONS

200

This one circuit could produce an AND, OR, XOR, NXOR,
NOR, NAND or OTHER functions

1 2 3

0 0 0

0 1 0

1 0 0

1 1 1

1 2 3

0 0 1

0 1 1

1 0 1

1 1 1

1 2 3

0 0 0

0 1 1

1 0 1

1 1 1

1 2 3

0 0 1

0 1 0

1 0 0

1 1 0

1 2 3

0 0 0

0 1 1

1 0 1

1 1 0

AND
NAND

OR

NOR

XOR

1 2 3

0 0 1

0 1 0

1 0 0

1 1 1

NXOR

P
1 2 3

0 0 1

0 1 1

1 0 1

1 1 1

CONST1

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

What is a Polygate? 201

12|4

00|1
01|1
10|1
11|0

NAND Gate Polygate Version

000000|1
012345|9

111000|1
111001|1
111010|1
111011|0

“MSB Mode”

Key Bits
Original
Inputs

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

What is a Polygate?

• In circuits: realizable as a “polymorphic gate” or “polygate”

202

Essentially a BINARY (2-input) GATE
4 additional inputs CHOOSE the function
The 4 inputs form a “functional key”
Key must be provided to get correct function
This form can generate 16 functions on 2 inputs

56
00|0000000011111111
01|0000111100001111
10|0011001100110011
11|0101010101010101

AND OR NANDXOR NXORNOR

Possible function keys

2 normal
input bits

<=== Normal output

4 key
input bits

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

What is a Polygate?

• Every binary gate (2 input/1 output) is transformed to a
polygate component (6 input/1 output)

• Appropriate key bits must be provided to the polygate
component to execute the correct function

• A polygate is essentially a MULTIPLEXOR component

• General idea:
• Adversary cannot fully determine circuit function without full I/O

enumeration
• The function of the circuit and therefore components are not know

without context of the ey

• Overhead:
• Depends on MUX chosen
• 4 additional inputs for

every binary gate

203

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Polygate Experiments

1) Setup directory and file information
204

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Polygate Experiments

2) Pick which gates will be transformed
205

ALL GATES

PICK RANDOM # of GATES

PICK RANDOM # of GATES, but favor BEGINNING, MIDDLE, or END GATES

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Polygate Experiments

2) Pick which gates will be transformed
206

PICK RANDOM # of GATES from a LIST of SELECTED GATES (WHITELIST)

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Polygate Experiments

2) Pick which gates will be transformed
207

PICK RANDOM # of GATES but exclude those on LIST of SELECTED GATES (BLACKLIST)

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Polygate Experiments

2) Pick which gates will be transformed
208

PICK SPECIFIC GATES

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Polygate Experiments

3) Choose overhead limits
209

Uncheck Limit Size of Variant for no limitations
Otherwise, choose gate % increase allowed (overhead)

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Polygate Experiments

4) Key options:

5) Polygate options:

6) Click TRANSFORM

210

Prepend (MSB) or append (LSB) key bits to the input vector

Compress key: reduce the size of the key string (will produce non-deterministic variation)

Static Polygates:
Pick one of the static polygate (MUX) designs: choose specific one (Single)
Pick one of the static versions randomly every time a polygate is inserted (Choose Random)
Pick a random static version and introduce some degree of variation (Random w/ Variation)

Dynamic Keymap:
Generate a random keymap for every polygate (a different truth table mapping for the MUX)
Generate only the 6 basic gate types for the keymap component (Random Reduced)

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Polygate Experiments 211

Key for the polygate circuit provided in the Keys TAB

Options to save a “decrypt” version of the polygate circuit that clearly shows key bit inputs
- First click BROWSE for file path, then SAVE

Example:
• Selected gates to replace
• Random static polygate
• No overhead limit

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Polygate Variants 212

Key = 1010

Key = 101010100100 Key = 10110101110111011110010000111111

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

213

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Logic Encryption

• Allows generation of variants using the standard/traditional algorithm
for logic encryption based on insertion of XOR/NXOR gates and
addition of a single key-bit input

• Also known as LOGIC LOCKING

214

New key bit: key value = 0
XOR gate

Selected gate

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Logic Encryption

• Encrypt Options:
• All gates
• Some # of random gates
• Specific gates

• Basis gate set types for insertion of logic locking :
• XOR/NXOR
• XOR/NXOR/AND/OR

• Key Options
• Key compression
• Append LSB/MSB mode

215

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

216

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

AND-Tree Insertion

• AND trees are essentially multiple-input AND gates that
are typically decomposed:

217

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

AND-Tree Insertion
• Inserting AND-tree structures are intended as a countermeasure to

SAT-based reasoners by inserting a subcircuit that requires 2n-1

average evaluation
• The structure can be composed of alternating AND/AND or

AND/NAND logic in parallel and then inserted (randomly) into a
parent circuit in a semantically preserving manner

• Insertion approach is similar to logic locking where a predetermined
0/1 value produces semantically equivalent functions

218

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

AND-Tree Insertion

• Paired AND/NAND trees can be inserted into a circuit and
used for semantically equivalent insertion using
XOR/NXOR logic and constant 0/1 signals

219

AND tree

NAND tree

original
gates

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

AND-Tree Experiments 220

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

AND-Tree Experiments

1) Experiment Setup: Set file and directory information

2) Insert Options:

221

Insert a Single AND Tree
• Use AND/NAND trees (vs. just balanced AND trees)
• Slider: input size of AND trees (2 to 64 input)

Insert multiple AND trees (Y/N)
• # of TREES
• Generate incremental variants (save variant after

each AND tree is inserted, up to the final one)
• Use Random AND Trees: instead of a fixed input

size AND tree, use random input size (between 2 to
64)

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

222

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

223

Reductions:

Equational Reducer

Pattern Based Circuit Reducer
Structural
Shaped

Pattern Viewer

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Equational Reducer 224

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Equational Reducer
Instructions:
1) Enter equation in valid syntax in the box above

2) Syntax rules are found on the syntax tab below

3) Press the Check button

4) Given valid syntax, several things are created:
--> the parse record in text form of the expression
--> the Abstract Syntax Tree of the expression
--> the semantic truth table of the expression
--> the BENCH version of the expression
--> BENCH options govern reduction of NOT gates and use of CONSTANT signals

There are two options for reduction:
==> Automatic: applies random Boolean logic laws, with one application being called a round
==> Manual: applies specific laws to applicable random parts of the equation

5) Automatic reduction:
==> Fill in the number of Reduction Rounds, then press the Reduce button
==> Number of rounds is how many random Boolean laws will be applied

6) Maximal reduction:
==> To run multiple attempts at reduction and save the optimal, check Maximal Reduction
==> Fill in the # of attempts, then press the Reduce button

7) Manual reduction:
==> To apply manual reductions, click the Manual checkbox
==> The possible reductions for the current expression are seen in the list on the right
==> Click on the reduction type and click the Apply button
==> Each reduction will present new options for reduction

Moving between manual and automatic will clear the journal and start at the original expression
Typing or modifying the Boolean equation will clear any AST, truth table, or BENCH and need to be rechecked
Click the Reset button to clear all panels

225

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Equational Reducer
Three options can guide application of reduction rules: logical reductions are applied before
commutativity, distributivity, associativity, and inverse laws
• Allow Structural will include commutative, associative, simple distributive, and inverse

patterns that are possible
• Allow Inverse will include inverse patterns that are possible if no other structural ones are

possible
• Allow Distributive will allow complex distributive patterns

Structural patterns include:
ReduceAssociativityType.VAR1_AND_VAR2_AND_VAR3
ReduceAssociativityType.VAR1_OR_VAR2_OR_VAR3
ReduceCommutativityType.VAR1_AND_VAR2
ReduceCommutativityType.VAR1_OR_VAR2

Distributive structural patterns include:
ReduceDistributivityType.VAR1_AND_VAR2_OR_VAR3
ReduceDistributivityType.VAR1_OR_VAR2_AND_VAR3

Inverse patterns include:
ReduceDeMorganInverseType.NOT_VAR1_AND_NOT_VAR2
ReduceDeMorganInverseType.NOT_VAR1_OR_NOT_VAR2
ReduceDistributivityInverseType.VAR1_AND_VAR2_OR_VAR1_AND_VAR3
ReduceDistributivityInverseType.VAR1_OR_VAR2_AND_VAR1_OR_VAR3

226

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Equational Reducer Syntax
Equations should take the form of:

OUTVAR = EQUATION

- OUTVAR must be of the form: oX => o0, o1, o2, etc.
- EQUATION is a combination of VARIABLES and OPERATORS.
- VARIABLES must be of the form iX => i0, i1, i2, etc.
- VARIABLES are ordered in circuit input by number
- OPERATORS must be one of: '(NOT) +(OR) *(AND) ^(XOR)
- Constant Zeros (0) / Ones(1) are allowed as VARIABLES

General rules:
- At least 1 VARIABLE required (o1 = 0/o1 = 1 not allowed)
- Use parenthesis to clarify logical expressions and precidence

Examples:
o1 = i0 + i1
o1 = ((i0' * i1)' + (i2 * i3')')'
o1 = i1 * 1; o2 = i4 + i18
o0 = i1 + i2 ^ i3 * i4
o1 = (((i0 * i1)' + (i2 * i3)')' * (i1 + i2))'
o6 = (i7 * i9) + i1
o12 = (i25 ^ i512)'

Precedence rules:
- Parenthesis have highest precedence
- NOT (') associates to the left before other OPERATORS
- AND (*) associates before OR (+) and XOR (^)
- XOR (^) associates before OR (+)

Example: o0 = i1 + i2' ^ i3 * i4
is equivalent to: o0 = (i1 + ((i2') ^ (i3 * i4))

227

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Reducer Experiments 228

1) ENTER equation

3) Click Reduce

4) Final Equation

2) Check

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Reducer Experiments 229

Pre Reduction Views:

Truth Table

Parse Derivation

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Reducer Experiments 230

Pre Reduction Views:

Abstract Syntax Tree
From Starting Formula

BENCH File Based
on Starting Formula

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Reducer Experiments 231

Post Reduction Views:

Abstract Syntax Tree
From Reduced Formula

BENCH File Based
on Reduced Formula

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Reducer Experiments 232

Main Option: Automatic vs. Manual

Automated
• # of Reduction Rounds
• Maximal Reduction (Y/N): unlimited rounds until the

expression cannot be reduced further

Automated reduction is non-deterministic: Boolean logic
laws are applied randomly and thus different results may be
obtained depending on the order and specific sequence

There may be multiple statements which can be reduced by
the same appropriate logic law: these are also chosen
randomly

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Reducer Experiments

• Example: 10 Reduction Rounds
233

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Reducer Experiments

• Continuing to Click Reduce will produce a new result…
• Example: Same Equation, 10 Reduction Rounds, Different

Results (smaller equation)

234

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Reducer Experiments

• Maximal Reduction: # of Attempts
• Each attempt is governed by # of Reduction Rounds

235

Journal shows the
best result of
applying logic laws
(smallest equation
size)

If no attempt can
make equation
smaller, final
equation is the
original

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Reducer Experiments

• Increasing # of rounds and # of attempts may (or may not)
produce better results

• Runtime will increase

236

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

• Allowing structured, inverse, and complex distributive
expressions may open up alternative reduction
sequences that may result in smaller sizes

237

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

238

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Pattern Based Circuit Reducer 239

Example: BENCH circuit selected in text panel

Pass: an application of all reduction algorithm, in some sequene

Complete Reduction: perform reduction rounds until two
reduction rounds in a row no longer reduce the number of gates in
the circuit

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Circuit Reducer 240

Options:
Save the reduced BENCH file and
optionally open it as a text panel

Instead of the reducer choosing a
random order of the reduction
algorithms, you can specify a specific
order instead

Verification options to check the
reduced variant is semantically
equivalent to the original circuit

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Circuit Reducer 241

After selecting REDUCE:

Per pass summary

Overall summary

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Circuit Reducer 242

After selecting REDUCE:

The currently implemented circuit reducer is based on pattern matching, with a view toward early
implementations of the CORGI algorithm and the manner in which it accomplished polymorphic variation

In this example, the I/O space is tractably enumerable and normal logic synthesis would normally be used to
reduce such a circuit to its smallest form: the benefits of pattern matching are most notable in larger circuits when
standard synthesis techniques are not practical

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Structural and Shaped Reduction 243

Any single pattern reduction algorithm can be applied to a circuit

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Pattern Viewer 244

The viewer shows the definition for all structural and shaped
pattern circuits used in reduction algorithms

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

245

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

246

Random Circuits:

Random Circuit Generator

Random Equivalent Generator
(Merged Signature)

Random Equivalent Generator
(Full Signature)

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Random Circuit Generator 247

Walkthrough:
1) Choose inputs
2) Choose outputs
3) Choose size (# of gates)
4) Choose max fan-in
5) Guarantee # of outputs
6) Generate truth table

(recommended for small I/O)
7) Pick basis set
8) Select GENERATE

Single Circuit Mode

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Random Circuit Generator 248

Batch Mode
Walkthrough:
1) Choose a save directory
2) Choose if you also want to

save image or graphml files
(in addition to BENCH)

3) Choose for loop constraints:
- Input Size (FROM/TO)
- Output Size (FROM/TO)
- Gate Size (FROM/TO)
- Iterations (how many of each

random circuit should be
generated)

4) Choose max fan-in
5) Guarantee # of outputs
6) Generate truth table

(recommended for small I/O)
7) Pick basis set
8) Select GENERATE

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Random Circuit Generator 249

Batch Mode

These options would generate 10
(iterations) of 4 inputs, 2 output, 12
gate circuits in the batch save directory

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Random Equivalent Circuit (Merged Signature) 250

This option does not require a selected BENCH circuit to be loaded first

Load an original circuit first

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Random Equivalent Circuit (Merged Signature) 251

Select P’ tab, choose generation options, and select generate

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Random Equivalent Circuit (Merged Signature) 252

Continuing to hit GENERATE will create another variant:

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Random Equivalent Circuit (Merged Signature) 253

Merged Signature Random Circuits:
These circuits are created by generating an equivalent random circuit for each
OUTPUT of the original circuit, and then MERGING those individual circuits into
a single circuit

00|1122
01|8901

00|1101
01|1111
10|1111
11|1001

random1

random2

random3

random4

2 input / 1 output / X gate circuits

random1

random2

random3

random4

random circuit

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Random Equivalent Circuit (Full Signature) 254

This option does not require a selected BENCH circuit to be loaded first

Load an original circuit first, then switch to P’ tab

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Random Equivalent Circuit (Full Signature) 255

Full Signature Random Circuits:
These circuits are created by generating random circuits that match the entire
input/output size of the original circuit. Generation continues until a circuit with
a matching signature is generated OR max generation attempts are reached.

00|1122
01|8901

00|1101
01|1111
10|1111
11|1001

Full Signature = 1111111001101111

In general, size has to be adjusted for a reasonable possibility of
generating the maximum range of signatures

20 gate variant

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Random Equivalent Circuit (Full Signature) 256

00|1122
01|8901

00|1101
01|1111
10|1111
11|1001

Full Signature = 1111111001101111
6 gate variant

Tradeoff with merged vs full signature is that it may take longer or max
generation attempts may be reached using the full signature approach:
however, the merged signature approach generates larger circuits

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

257

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Convert PLA File

1. File->Open->PLA
• PLA formats come from supported files used by the original SIS system

https://ptolemy.berkeley.edu/projects/embedded/Alumni/pchong/sis /

https://ptolemy.berkeley.edu/projects/embedded/Alumni/pchong/sis

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Convert PLA File

• Example PLA file (.pla)
259

1) Generate BENCH

2) BENCH Tab

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Convert PLA File

• Example PLA file (.pla)
260

3) Browse to select file path

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Convert PLA File

• Example PLA file (.pla)
261

4) Click SAVE 5) Load in Panel
will bring BENCH file
up in BENCH tab

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

262

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Convert DIMACS File

1. File->Open->DIMACS
• DIMACS files are used to store undirected graphs and is a standard format to

SAT solvers
• CNF extension implies Conjunctive Normal Form format

https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index-seo.php/SATLINK____DIMACS

https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index-seo.php/SATLINK____DIMACS

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Convert DIMACS File

DIMACs file

Convert to
BENCH

View SatGraf
representation
of CNF formula

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Convert DIMACS File

1) Generate BENCH 2) BROWSE to
choose filepath
for BENCH text

Decompose multi-
fanin gates when

saving BENCH file

3) SAVE BENCH
to write BENCH
text

Load BENCH file as
panel tab on SAVE

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Convert DIMACS File

SatGraf community viewer: 4 layout
options and 3 community formats

Save
image of
SatGraf

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Use Case: Loading and Convert DIMACS File

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

268

Tool Interfaces

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Tool Interfaces
• Espresso: version #2.3, Release date 01/31/88

• Computer program uses heuristic and specific algorithms for efficiently reducing
complexity of digital electronic gate circuits

• Copyright 1988 - 1983 by the Regents of the University of California
• Part of the Octtools package for IC design developed at University of California,

Berkeley
• Richard Rudell published variant Espresso-MV in 1986 under paper Multiple-Valued

Logic Minimization for PLA Synthesis.
• PET uses ESPRESSO in native Windows format for logic and PLA minimization

For more information see:
https://embedded.eecs.berkeley.edu/pubs/downloads/espresso/index.htm

• misII / MIS: release #2.2(AC)
• Algorithmic multi-level logic synthesis and minimization program
• Starts from combinational logic macro-cell and produces optimized set of logic

equations which preserves input-output behavior of the macro-cel
• Has algorithms for minimizing area required to implement the logic equations
• Has technology mapping step to map a network into a user specified cell library
• Part of the Octtools package for IC design developed at the University of California,

Berkeley
• Copyright 1988 - 1983 by the Regents of the University of California
• PET uses misII in native Windows format for gate synthesis in several algorithms.

For more information see:
https://embedded.eecs.berkeley.edu/pubs/downloads/octtools/index.htm

269

https://embedded.eecs.berkeley.edu/pubs/downloads/espresso/index.htm
https://embedded.eecs.berkeley.edu/pubs/downloads/octtools/index.htm

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Tool Interfaces
• ABC: version 1.01 (compiled Feb 13 2011 19:06:26)

• Software system for synthesis and verification of binary sequential logic circuits
appearing in synchronous hardware designs

• Combines scalable logic optimization based on And-Inverter Graphs (AIGs),
optimal-delay DAG-based technology mapping for look-up tables and standard cells,
and innovative algorithms for sequential synthesis and verification

• Copyright (c) The Regents of the University of California. All rights reserved.
• PET uses ABC for synthesis and processing of PLA and BLIF files as well as logic

minimization and synthesis. PET also provides a graphical console interface for
executing ABC scripts.

For more information see:
http://people.eecs.berkeley.edu/~alanmi/abc/

• JDD: build 104, Feburary 2012
• A pure Java BDD and Z-BDD library - java implementation of decision diagram

library inspired by BuDDy (BDD package written in C)
• Includes support for Zero-suppressed BDD
• Written by Arash Vahidi who provides software for use in academic projects
• PET uses a modified version of the JDD library build 104, Feburary 2012, for

generation and visualization of BDDs. Binary Decision Diagrams (BDDs) are used in
formal verification, CSP and optimization..

For more information see:
https://bitbucket.org/vahidi/jdd/wiki/Home

270

http://people.eecs.berkeley.edu/%7Ealanmi/abc/
https://bitbucket.org/vahidi/jdd/wiki/Home

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Tool Interfaces

• Z3 (version)
• The Satisfiability Modulo Theories (SMT) Solver Z3 supports the

SMTLIB format. It is a theorem prover from Microsoft Research.
• Licensed under the MIT license.
• PET uses the native z3 Java library and Windows DLL for deriving

models of single-output Boolean function circuits.

For more information see:
https://github.com/Z3Prover/z3/wiki

If you would like to see how z3 was used to solve a hardware-based
CTF challenge see:
https://liveoverflow.com/minetest/

271

https://github.com/Z3Prover/z3/wiki
https://liveoverflow.com/minetest/

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Tool Interfaces

• SATGraf (version 0.2)
• Allows visualization of Boolean SAT instances in DIMACS format. It’s

primary purpose was to view the evolution of the structure of a
Boolean SAT formula in real time as it is being processed by a conflict-
driven clause-learning (CDCL) solver.

• The tool is parametric, allowing the user to define the structure to be
visualized. In particular, the tool can visualize the community structure
of real-world Boolean satisfiability (SAT) instances and their evolution
during solving.

• Such visualizations have been the inspiration for several hypotheses
about the connection between community structure and the running
time of CDCL SAT solvers, some which we have already empirically
verified.

• For more information see:
https://www.swmath.org/software/14761

SATGraf was integrated partially into PET using the open source
location at:
https://bitbucket.org/znewsham/satgraf/src/master/

272

https://www.swmath.org/software/14761
https://bitbucket.org/znewsham/satgraf/src/master/

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Tool Interfaces

• Sat4j (version)
• Sat4j is a java library for solving Boolean satisfaction and

optimization problems. It can solve SAT, MAXSAT, Pseudo-
Boolean, Minimally Unsatisfiable Subset (MUS) problems.

• Being in Java, the promise is not to be the fastest one to solve
those problems (a SAT solver in Java is about 3.25 times slower
than its counterpart in C++), but to be full featured, robust, user
friendly, and to follow Java design guidelines and code conventions
(checked using static analysis of the source code).

• The library is designed for flexibility, by using heavily the decorator
and strategy design patterns.

• Sat4j is open source, under the dual business friendly Eclipse
Public License and academic friendly GNU LGPL license.

• For more information see:
http://sat4j.org/

273

http://sat4j.org/

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Native Graphics

• yFiles for Java (version)
• PET utilizes the yWorks graph library, which is a Java-based toolkit

for graph manipulation and visualization.

• The primary LogicCircuit class in PET uses the Graph2D object as
its core functionality for graph network operations.

• PET can export graphics in native JPG format as well as graphml,
which is the native format supported by the yEd graph editor
program, made by yWorks.

• You can download yEd viewer for graphml files at:
https://www.yworks.com/

274

https://www.yworks.com/

	Program Encryption toolkit��Graphical user interface�(PETGUI)
	What is PETGUI?
	Installing PETGUI
	Installing PETGUI
	Running PETGUI
	Overview
	Some Research Lineage
	Tool Interfaces
	Native format: bench
	BENCH Gate Types
	Basic Rules for BENCH Netlists
	PET Graphical user interface
	Main Menu
	Basic UI Functionality for Circuit Analysis
	Use Cases
	Use Case 1 Scenarios: Load and Analyze BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Use Case: Loading and Analyzing BENCH File
	Slide Number 64
	Use Case 2: Create New BENCH File (Text)
	Slide Number 66
	Use Case 3: Create New BENCH File (Visual)
	Use Case 3: Create New BENCH File (Visual)
	Use Case 3: Create New BENCH File (Visual)
	Use Case 3: Create New BENCH File (Visual)
	Use Case 3: Create New BENCH File (Visual)
	Slide Number 72
	Use Case 4: Create New BENCH File (Truth Table)
	Use Case 4: Create New BENCH File (Truth Table)
	Use Case 4: Create New BENCH File (Truth Table)
	Use Case 4: Create New BENCH File (Truth Table)
	Use Case 4: Create New BENCH File (Truth Table)
	Use Case 4: Create New BENCH File (Truth Table)
	Slide Number 79
	Use Case 5: Create New BENCH File (Equation)
	Use Case 5: Create New BENCH File (Equation)
	Use Case 5: Create New BENCH File (Equation)
	Use Case 5: Create New BENCH File (Equation)
	Use Case 5: Create New BENCH File (Equation)
	Use Case 5: Create New BENCH File (Equation)
	Use Case 5: Create New BENCH File (Equation)
	Slide Number 87
	Use Case 6: Create a pre-defined BENCH component
	Use Case 6: Create a pre-defined BENCH component
	Use Case 6: Create a pre-defined BENCH component
	Use Case 6: Create a pre-defined BENCH component
	Slide Number 92
	Use Case 7: Export a BENCH File from Text Panel in Different Formats
	Slide Number 94
	Slide Number 95
	Transforms
	Transforms: Concatenate
	Transforms: Concatenate
	Transforms: Concatenate
	Slide Number 100
	Transforms: Merge
	Slide Number 102
	Transforms: Merge Common Input
	Transforms: Merge Common Input
	Slide Number 105
	Transforms: Decompose Multi-Fanin
	Slide Number 107
	Transforms: Decompose XOR
	Slide Number 109
	Transforms: Decompose Function
	Transforms: Decompose Function
	Transforms: Decompose Function
	Slide Number 113
	Transforms: Transform Basis
	Transforms: Transform Basis
	Slide Number 116
	Transforms: Transform Random Basis
	Transforms: Transform Random Basis
	Slide Number 119
	Canonical Transformations
	Transforms: Sum of Products
	Transforms: Product of Sums
	Transforms: Ring Sum Expansion
	Transforms: And Inverter Graph
	Transforms: Reduced Canonical Forms
	Transforms: Espresso
	Transforms: Espresso Canonical Forms
	Transforms: Espresso Canonical Forms
	Transforms: Espresso Canonical Forms
	Transforms: misII
	Transforms: ABC
	Transforms: ABC
	Transforms: ABC
	Slide Number 134
	Slide Number 135
	Circuit Partitioner
	Circuit Partitioner
	Circuit Partitioner
	Subgraph Enumeration
	Subgraph Enumeration
	Semantic Component Identification
	Semantic Component Identification
	Semantic Component Identification
	Constraints
	Structural Component Identifier
	Structural Component Identifier
	View Module Library
	Slide Number 148
	Cryptographic Boolean Properties
	Cryptographic Boolean Properties
	Cryptographic Boolean Properties
	Cryptographic Boolean Properties
	Cryptographic Boolean Properties
	Slide Number 154
	Slide Number 155
	Variation Techniques
	Structural Polymorphism
	Slide Number 158
	Iterative Selection/Replacement
	Picking a Random Circuit with Function f()
	Iteration Based
	Iteration Based
	Iteration Based
	Iteration Based
	Iteration Based
	Iteration Based
	Iteration Based
	Iteration Based
	Iteration Based
	Iteration Based
	Size Based
	Round Based
	Replacement with Random vs RBLE Generation
	Replacement with Random vs RBLE Generation
	RBLE Example
	RBLE Generation Policies
	RBLE Options
	Running an RBLE Experiment
	Slide Number 179
	Deterministic Variation
	Deterministic Variation
	Boundary Blurring
	Component Fusion
	Component Encryption
	Component Encryption
	Component Encryption
	Slide Number 187
	Program Encryption
	Program Encryption
	Summary of Program Encryption
	Summary of Program Encryption
	Program Encryption: Choose P
	Program Encryption: Generate E and D
	Program Encryption: Compose P and E
	Program Encryption: Synthesize P ‘
	Program Encryption: Concat D to P’ for Verification
	Slide Number 197
	Permutation Circuits
	Slide Number 199
	Functional Polymorphism
	What is a Polygate?
	What is a Polygate?
	What is a Polygate?
	Polygate Experiments
	Polygate Experiments
	Polygate Experiments
	Polygate Experiments
	Polygate Experiments
	Polygate Experiments
	Polygate Experiments
	Polygate Experiments
	Polygate Variants
	Slide Number 213
	Logic Encryption
	Logic Encryption
	Slide Number 216
	AND-Tree Insertion
	AND-Tree Insertion
	AND-Tree Insertion
	AND-Tree Experiments
	AND-Tree Experiments
	Slide Number 222
	Slide Number 223
	Equational Reducer
	Equational Reducer
	Equational Reducer
	Equational Reducer Syntax
	Reducer Experiments
	Reducer Experiments
	Reducer Experiments
	Reducer Experiments
	Reducer Experiments
	Reducer Experiments
	Reducer Experiments
	Reducer Experiments
	Reducer Experiments
	Slide Number 237
	Slide Number 238
	Pattern Based Circuit Reducer
	Circuit Reducer
	Circuit Reducer
	Circuit Reducer
	Structural and Shaped Reduction
	Pattern Viewer
	Slide Number 245
	Slide Number 246
	Random Circuit Generator
	Random Circuit Generator
	Random Circuit Generator
	Random Equivalent Circuit (Merged Signature)
	Random Equivalent Circuit (Merged Signature)
	Random Equivalent Circuit (Merged Signature)
	Random Equivalent Circuit (Merged Signature)
	Random Equivalent Circuit (Full Signature)
	Random Equivalent Circuit (Full Signature)
	Random Equivalent Circuit (Full Signature)
	Slide Number 257
	Use Case: Loading and Convert PLA File
	Use Case: Loading and Convert PLA File
	Use Case: Loading and Convert PLA File
	Use Case: Loading and Convert PLA File
	Slide Number 262
	Use Case: Loading and Convert DIMACS File
	Use Case: Loading and Convert DIMACS File
	Use Case: Loading and Convert DIMACS File
	Use Case: Loading and Convert DIMACS File
	Use Case: Loading and Convert DIMACS File
	Slide Number 268
	Tool Interfaces
	Tool Interfaces
	Tool Interfaces
	Tool Interfaces
	Tool Interfaces
	Native Graphics

