
4 CROSSTALK The Journal of Defense Software Engineering September/October 2009

Resilient Software

In our modern world, the meaning of a
word can change quite often. Even the

term computer previously referred to a
human operator who crunches numbers
while today we relate this term clearly to a
machine. With the emergence of new
reconfigurable computing technologies
such as FPGAs, the definitions of soft-
ware and hardware have become less clear.
As Vahid suggests [1], we should stop call-
ing circuits hardware and start broadening
what we consider software.

In the traditional sense, software
referred to the bits (1s and 0s) represent-
ing language statements that could be exe-
cuted on hardware processors. Today,
embedded systems utilizing FPGAs real-
ize circuits merely by downloading a
sequence of bits that instantiate gates,
controllers, arithmetic logic units, crypto
circuits, and even processors. Thus, a cir-
cuit implemented on embedded systems
utilizing an FPGA is essentially software.

Considering the proliferation of
embedded systems with reprogrammable

hardware components in both commercial
and military sectors, we can readily show
the impact of malicious activity geared to
reverse engineer, tamper, or copy critical
technologies residing in those systems. In
this article, we delineate protective trans-
formations for such embedded logic and
present a brief survey of reverse engi-
neering attacks in this realm.

Characterizing Circuit
Protection
Both the DoD and the commercial sector
have an interest in describing and measur-
ing candidate protective measures,
whether they derive from hardware anti-
tamper realizations or software-based
techniques. Adequately defining criteria
for successful software protection in prac-
tice remains elusive mainly because full
protection may not be possible, at least
theoretically [2]. Collberg and Thombor-
son [3] describe three practical means of
protecting software against copying,
reverse-engineering, and malicious tam-

pering; these include, respectively, water-
marking, obfuscation, and tamper-proof-
ing. In terms of analyzing protection
mechanisms, they suggest measuring
obfuscating transformations based on
their obscurity (how much time is
increased for understanding and reverse
engineering), resilience (difficulty for
reversing the transformation), stealth (the
natural context of the transformation),
and cost (overhead).

Though embedded systems may
encompass a wide variety of custom
processors and components, our discus-
sion focuses on more fundamental logic
programs represented as combinations of
gate-level logic. In describing such cir-
cuits, we use two primary analysis para-
digms: how they behave, and how they are
constructed. We express the black-box
behavior of a circuit by enumeration of
all inputs, subsequent evaluation and
propagation of signals on all intermediate
gates, and recording of the corresponding
output. Figure 1 illustrates an input/out-
put representation of a small combina-
tional logic circuit with three inputs (X1,
X2, X3), four intermediate gates (4, 5, 6,
7), and two distinguished intermediate
gates (Y6, Y7) known as outputs.

We define a signal as a vertical reading
of a column in the truth table (a fully enu-
merated input/output behavior, based on
canonical ordering of inputs) and call the
signature of a circuit the collection of its
output signals. Given the full truth table
of a circuit, we define its gray-box behav-
ior as signals of all intermediate logic
gates based on the enumeration of all
possible inputs.

The white-box structure of a circuit
may be represented by textual description
languages (Bench, Verilog, VHDL, etc.),
which are regular grammars that support
expression of gates, electrical signals,
components, and gate interconnections.
Textual representations translate into
graphical forms, which are referred to as
the circuit topology. Figure 2 illustrates

Considering Software Protection
for Embedded Systems

Software in modern embedded systems is often realized by using prefabricated reconfigurable computing devices such as Field
Programmable Gate Arrays (FPGAs). Such devices support the use of portable hardware description languages and, as a
result, have vulnerabilities consistent with normal software applications. In this article, we consider the nature of adversarial
reverse-engineering attacks in this environment and measures of protection.

Dr. Yong C. Kim and Lt. Col. J. Todd McDonald, Ph.D1

The Air Force Institute of Technology

Figure 1: Black-Box and Gray-Box Circuit Behavior

Considering Software Protection for Embedded Systems

September/October 2009 www.stsc.hill.af.mil 5

the circuit seen in Figure 1 in correspond-
ing graphical representation and a
BENCH textual description [4]. We
define a component within the circuit as a
collection of lower-level elements (such as
gates) that form a distinct sub-circuit.

The semantics (or black-box behavior)
of a circuit consists of only the input and
output signal pairs (the X and Y signals
seen in Figure 1). Intuitively, one way to
think of circuit protection is the act hiding
all intermediate transitions which trans-
form input to output. The collection of
these transitions, in essence, represents
the intellectual property of a circuit.
Without knowledge of the original inter-
mediate transitions, no human or auto-
mated process may derive other informa-
tion about the original circuit such as
topology, signal definitions, or compo-
nent definitions. Many define the essence
of circuit reverse engineering as the abili-
ty to correctly identify topology or com-
ponents of the original circuit [4, 5].

To protect a circuit, replace the origi-
nal circuit with a semantically equivalent
version (one which does the same func-
tion) that hides the intellectual property of
the original in some definable or measur-
able way. For the circuit in Figures 1 and
2, a replacement circuit would have iden-
tical signals for inputs and outputs (X1,
X2, X3, Y6, Y7), but would have some
other internal white-box construction
(represented by gates 4 and 5 in Figures 1
and 2).

This formulation restates the essence
of a virtual black box [2] because it
defines full protection as a replacement
circuit that does not leak any more infor-
mation relative to an original circuit (other
than its input/output characteristics). In
more practical settings [3], the goal of
using a replacement circuit becomes
obscuring the original circuit in some way
so that the cost of reverse engineering is
maximized while operation characteristics
of the circuit are not degraded beyond an
acceptable level. Next, we delineate the
permissible transformations on a circuit
when obfuscation is in view.

Characterizing Circuit
Transformations
We define an obfuscating transformation
O(·) as an efficient, terminating program
that takes circuit P as input and returns
another circuit P’: O(P) = P’. Of this asser-
tion, all theoreticians and practitioners
(that we are aware of) would agree.
Beyond that, the majority of theoretical
and practical models for obfuscation have
at least two other requirements for the

obfuscating program O(·): semantic equiv-
alence and security.

We believe security may be provable in
some circumstances if we are allowed to
expand the semantic equivalence require-
ment. (In other words, if an obfuscator
can change the [white-box] structure of a
circuit so that [black-box] input/output
relationships of the original circuit P are
also changed.) We refer to black-box
transformation with this meaning in mind.
Likewise, the obfuscator may change
(white-box) structure in such a way so that
semantic equivalence with P is preserved:
We refer to white-box transformation
with this meaning in view.

Black-Box Transformations
Sander and Tschudin [6] were one of the
first to recognize the value of a black-box
transformation as a means to hide func-
tional intent. In discussing black-box
changes to P, we assume there are certain
programmatic environments where the
output of the obfuscated circuit P’ is con-
ducive for off-line analysis and, therefore,
open to the possibility of recovering the
intended output of the original circuit P.
In certain environments, this may not be
possible. Black-box transformations,

however, may be necessary to achieve
stronger guarantees of security. In order
to achieve a useful black-box transforma-
tion by some specific white-box changes
to the structure of a circuit, an obfuscat-
ing operation must meet two require-
ments:
1. Change in Black-Box Behavior.

The functional behavior changes for
some majority of values in the domain
x, P(x) ≠ P’(x). This leaves open the
possibility that some transformations
may produce equivalent values for cer-
tain values of x.

2. Recovery of Black-Box Intent. In
order to recover the original functional
output of P, some function S(·) must
allow inversion: ?(x):P(x)=S(P’(x)).
One way of hiding or masking

input/output relationships is to do so
through transformation that keeps the
input/output values hidden in plain sight.
We refer to such techniques as a black-box
refinement of the original circuit P and
present its algorithmic description in
Figure 3. From the viewpoint of a circuit
and its corresponding truth table, we can
visualize at least five distinct operations
that may be a part of a black-box refine-
ment. We envision that all five would be

Figure 2: White-Box Circuit Description

Program P Program P’

Input xx ' X

Input x’ x’ ' X’

Output yy '

Y Output y’ y’ '

Y’

Transformation
s(P,k,X,Y)=
q,P’ X’,Y’

Resolution
y=q(y’,k)

Figure 3: Black-Box Refinement

Resilient Software

6 CROSSTALK The Journal of Defense Software Engineering September/October 2009

applied in a probabilistic manner based on
configurable properties found in a (secret)
key. If we let X represent the domain of
the original P and confine it to a fixed
number of bits, a black-box refinement
may do any of the following:
1. Add input bits so that a new domain

with a larger possible bit string X’ is
created.

2. Randomly permute the input bits
themselves, resulting in a virtual
reordering of the bits.

3. Introduce intermediate gates that
would result in new truth table
columns for P’.

4. Introduce a random number of out-
put gates.

5. Randomly permute any of the output
bits themselves.
Changing the full input/output rela-

tionships of a circuit may truly hide the
original black-box intent of a circuit. By
composing a circuit with a semantically
strong data encryption algorithm, the
resulting program exhibits input/output

relationships with desirable cryptographic
properties. Figure 4 depicts this black-box
change known as semantic transformation.

White-Box Transformations
We define a structural white-box change
to a circuit as a change to the topology of
the underlying directed acyclic graph,
which represents the circuit. Topological
changes may involve textual renaming of
signals or gates, changing the Boolean
function type of particular gates, reorder-
ing input or output signals, introducing
additional inputs, introducing additional
outputs, concatenating the serial compo-
sition of the entire circuit with another
circuit, merging the parallel composition
of the circuit with another circuit, or
replacing one or more gates within the
circuit with a functionally equivalent set
of gates.

Figure 5 shows the traditional mean-
ing of obfuscation as understood in both
theoretical and practical study: A trans-
formation w(P, k) = P’ takes as input a cir-

cuit P with some (possibly) probabilistic
information embodied in key k. We con-
sider any random choices made by an
obfuscation process to be part of this
key. The output of w(·) is a circuit P’ that
remains functionally equivalent to the
original circuit P and represents a differ-
ent version of the original. Current
obfuscation research centers on the
transformation algorithm and defining
the security that is achieved by its use.

Reverse-Engineering Attacks
In the world of real circuit analysis, the
typical goal of a reverse engineer is to
recover the input/output of the circuit in
question by some method less than full
exponential enumeration. As we have
already alluded to with black-box refine-
ment or semantic transformation, such
transformations would (at a minimum)
prevent this form of reverse engineering
while simultaneously introducing the need
for output recovery in order to maintain
functional utility. There are a number of
different ways to discover and alter the
functionality of a circuit. The term tamper-
ing refers to broad categories of circuit
exploitation, including subversion, modifi-
cation, and reverse engineering. Reverse
engineers typically target reproduction of
a circuit’s functionality, usually for capital
gain or malicious intent. Specific attacks
can be roughly categorized as brute force,
white-box/gray-box, side-channel, and
fault injection.

Brute Force Attacks
Brute force attacks are based on black-box
circuit behavior and are performed either
while the circuit is in its natural environ-
ment or standalone in a simulator. Such
attacks can be categorized as either general
or passive.
• General black-box attacks. Tra-

ditionally, black-box attacks are the
first and simplest means to reverse
engineer a circuit. Adversaries glean
black-box behavior by enumerating all
possible input combinations and
recording corresponding outputs.
Using a large truth table, data analysis
algorithms—or in some cases visual
inspection—the adversary may re-cre-
ate the underlying Boolean equations
that define the circuit’s logic; this type
of attack works well on circuits with
well-defined inputs and outputs.

There exists potentially 2n input
combinations to fully characterize any
combinational circuit and potentially
2n + m or more input combinations
for sequential circuits with m sequen-
tial elements. For a typical circuit with

Program P Program P’

Input x

Output y Output y’

Transformation
t(p,k)= r, P’

Recovery
y’=r(y’,k1)

Figure 4: Semantic Transformation

Input x

Output y

Program P Program P’Transformation
w(p,k)=P’

Figure 5: White-Box Transformation

Considering Software Protection for Embedded Systems

September/October 2009 www.stsc.hill.af.mil 7

100 or more inputs, a conventional
black-box attack is not practical due to
an enormously large search space. For
example, a simple 64-bit adder with a
carry-in pin has a total of 129 input
pins and 65 output pins. If the reverse
engineer, with no prior knowledge of
the circuit applies the inputs, it would
take 2129 attempts or 299 seconds,
roughly 2 x 1022 years, using a state-of-
the-art 1 gigahertz automatic test
equipment costing well over $1 mil-
lion.

• Passive attacks. In passive attacks,
adversaries examine circuits in their
native environment (i.e., while they are
being used in an actual circuit). Input
and output pins are monitored, using
either an oscilloscope or logic analyzer,
and data is recorded giving a good pic-
ture of the chip’s functionality. Typi-
cally, adversaries use passive attacks to
provide focus for later black-box
attacks that require a smaller distribu-
tion of input values.

White-Box/Gray-Box Attacks
In physical realizations, white-box attacks
focus on the structure of a circuit. An
adversary attempts to gain access to the
internal nodes of a circuit without having
to go through input/output evaluation,
allowing a better functional understand-
ing. Even though adversaries may risk
destroying delicate circuit internals, these
techniques are the only way to get direct
access to the underlying white-box struc-
ture of a circuit in the real world. In order
to extract white-box descriptions, adver-
saries focus attention on silicon character-
istics using specific technologies such as
ion beams and optical equipment.
• Focused Ion Beam. The focused ion

beam is a semiconductor fabrication
device similar to the scanning electron
microscope (SEM), but it uses gallium
ions instead of electrons. Unlike the
SEM, it has a destructive effect as the
gallium ions are implanted into the
sample surface. This method allows an
adversary to set specific intermediate
nodes to specific values (0 or 1),
including modifying existing connec-
tions to bypass normal input signal
propagation. Likewise, an adversary
does not have to rely on the actual out-
put of the circuit in order to examine
intermediate propagation values.

• Optical Equipment. Optical attacks
rely on the interaction of photons
with silicon devices and take two
forms: optical probe and optical
attack. Optical probing focuses on cir-
cuit examination by looking at transis-

tor states. Adversaries essentially use
pictures to observe signals that are
propagated by means of applied input
values.

Side-Channel Attacks
We observe that even circuits which may
be provably secure according to a theoret-
ical model—based on static white-box and
dynamic black-box behavior—may still
leak critical information relative to the cir-
cuit’s function (based on real-world imple-
mentation issues). Rather than use brute
force (to glean black-box behavior) or
physically probe the internals of a circuit
(to glean white-box and gray-box behav-
ior), side-channel attacks use secondary
information to create a picture of circuit
functionality. Side channels are areas of a
circuit that leak unintended information.
They include power consumption and
timing analysis:
• Power Consumption. Power con-

sumption attacks mainly focus on
breaking cryptographic schemes. The
concept is that through an examina-
tion of the power used by a circuit, the
underlying encryption algorithm can
be found. This approach gives an
attacker insight into the data values
that are being manipulated on a chip. It
is possible to then correlate this col-
lected data to known functions in
order to see exactly what is happening.

• Timing Analysis. With brute force
attacks, synchronous circuits add addi-
tional complexity in the reverse-engi-
neering process due to the timing con-
straints that are introduced. Timing
attacks focus on taking the circuit out-
side of normal parameters by modify-
ing the speed of the clock, either
speeding it up or slowing it down.
Because timing is linked directly to
real-world physical implementations of
various circuit technologies, our exist-
ing obfuscation framework requires
additional information regarding
structural characteristics of the circuit
implementation.

Fault Injection
Fault injection is a generic term describing
the injection of faults into digital systems
using a variety of attacks: raising voltage
higher or lower than system tolerances,
inducing voltage spikes, or introducing
clock glitches. An adversary may use any
of these methods to cause the system to
malfunction with intentions of revealing
information useful in further attacks. The
adversary performs fault injection dynam-
ically at circuit run-time combined with
power analysis techniques. Encryption

algorithms, such as the Advanced
Encryption Standard (AES), provide
strength against brute-force key discovery
from black-box behavioral analysis.
However, an adversary may use fault injec-
tions with realized AES circuits in order to
reduce encryption strength via key-space
reduction. This exploit requires internal
circuit access and reduces the goal of the
adversary from using brute-force methods
to interrupting the successful encryp-
tion/decryption process itself.

Conclusion
Given the current trend of reprogramma-
ble embedded devices within the DoD
and industry, attention needs to be refo-
cused on the benefits or measurability of
software protection applied to this
domain. Modern reconfigurable embed-
ded systems now require us to consider
circuits as software and the tamper meth-
ods applicable to physical circuits as new
threats to a broadened definition of soft-
ware. This article has presented a brief
overview of the characteristics, transfor-
mations, and attacks possible in the realm
of software implemented as circuits on an
embedded system. Ultimately, we must
turn our attention to protection of critical
technology resident in such an embedded
system, mindful of the possible threats
and techniques at our disposal.u

References
1. Vahid, Frank. “It’s Time to Stop Call-

ing Circuits ‘Hardware.’”IEEE Compu-
ter Magazine 40.9 (Sept. 2007): 106-108.

2. Barak, Boaz, et al. “On the (Im)possi-
bility of Obfuscating Programs.”
Electronic Colloquium on Computational
Complexity. 15 Aug. 2001 <http://
eccc.hpi-web.de/eccc-reports/2001/

Software Defense
Application

Considering the proliferation of embed-
ded systems with reprogrammable hard-
ware components in both commercial
and military sectors, we can readily show
the impact of malicious activity geared
to reverse engineer, tamper, or copy crit-
ical technologies resident in those sys-
tems. Both the DoD and industry have
interest in understanding how to
describe and measure candidate protec-
tive measures, whether they derive from
hardware anti-tamper realizations or
software-based techniques. This article
deals specifically with the characteristics
of protection, possible transformations,
and the delineation of malicious attacks.

Resilient Software

8 CROSSTALK The Journal of Defense Software Engineering September/October 2009

TR01-057/Paper.pdf>.
3. Collberg, Christian S., and Clark

Thomborson. “Watermarking, Tam-
per-Proofing, and Obfuscation—
Tools for Software Protection.” IEEE
Transactions on Software Engineering 28.8
(Aug. 2002): 735-746.

4. Hansen, Mark C., Hakan Yalcin, and
John P. Hayes. “Unveiling the ISCAS-
85 Benchmarks: A Case Study in
Reverse Engineering.” IEEE Design &
Test of Computers 16.3 (1999): 72-80.

5. Nohl, Karsten, et al. “Reverse-
Engineering a Cryptographic RFID
Tag.” Proc. of the USENIX Security
Symposium. San Jose, CA. 31 July 2008
<www.cs.virginia.edu/~evans/pubs/
usenix08/usenix08.pdf>.

6. Sander, Tomas, and Christian F.
Tschudin. “On Software Protection
via Function Hiding.” Lecture Notes in
Computer Science 1525 (1998): 111-123.

Note
1. The views expressed in this article are

those of the authors and do not reflect
the official policy or position of the
U.S. Air Force, DoD, or U.S. govern-
ment.

About the Authors

Yong Kim, Ph.D., is an
assistant professor in the
department of electrical
and computer engineering
at the Air Force Institute
of Technology (AFIT).

He received his doctorate in electrical
engineering from University of Wiscon-
sin-Madison (UW-M), his master’s degree
in computer engineering from the UW-M,
and his bachelor’s degree in computer
engineering from the University of
Washington.

Dept. of Electrical and Computer
Engineering
AFIT
BLDG 640, RM 304-A
Wright-Patterson AFB, OH
45433-7765
Phone: (937) 255-3636 ext. 4620
Fax: (937)656-7061
E-mail: ykim@afit.edu

Lt. Col. J. Todd
McDonald, Ph.D., is a
Lieutenant Colonel in the
USAF and an assistant
professor in the Depart-
ment of electrical and

computer Engineering at the AFIT. He
received his doctorate in computer sci-
ence from Florida State University, his
master’s degree in computer engineering
from the AFIT, and his bachelor’s degree
in computer science from the USAF
Academy.

Dept. of Electrical and Computer
Engineering
AFIT
2950 Hobson Way
BLDG 640, RM 304-A
Wright-Patterson AFB, OH
45433-7765
Phone: (937) 255-3636 ext. 4639
Fax: (937) 656-7061
E-mail: jmcdonal@afit.edu

Be a CrossTalk Backer
CrossTalk would like to thank the accompanying
organizations, designated as CrossTalk Backers,

that help make this issue possible.

CrossTalk Backers are government organizations that provide
support to forward the mission of CrossTalk.

Co-Sponsors and Backers are our lifeblood.

Backer benefits include:
• An invaluable opportunity to share information from your

organization’s perspective with the software defense industry.
• Dedicated space in each issue.
• Advertisements ranging from a full to a quarter page.
• Web recognition and a link to your organization’s page via

CrossTalk’s Web site.

Please contact Kasey Thompson at (801) 586-1037 to find out
more about becoming a CrossTalk Backer.

309th Software Maintenance Group

OO-ALC Engineering Directorate

309th Electronics Maintenance Group

CrossTalk would like to
thank our current Backers:

Cost Analysis Group

