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Motivation 

• Computing technology in national infrastructure is a 

strategic resource 

• Malicious reverse engineering shortens technological advantage 

• Adversaries understanding our technology can manipulate, clone, 

subvert 

 

• Protection Tools 

• Physical access 

• Encryption 

• Tamper-proofing 

• Watermarking / fingerprinting 

• Obfuscation 

 

• We consider limits of obfuscation of combinational circuit 

logic 
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Example 

• Reverse engineering of Mifare Classic RFID tag 

• Dutch government previously invested over $2 billion in 

new transit ticketing system 

• Nohl et al.[1] exposed transistors to identify gate level 

structures 

• From gate level structures components are identifiable 

• Revealed cryptographic keys enabling free access to 

Dutch transit system 
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Obfuscation 

• O: Ω →Ω 
• Efficient (running time/size): O(C) = C’ 

• Semantic equivalence: x: C(x) = C’(x) 

• Security property 

 

• Theoretically, ideal obfuscation not possible 
• No efficient algorithm exists to create a virtual black box 

• There are circuits which no algorithm can obfuscate 

 

• Theoretically, ideal virus detection not possible 
• No efficient algorithm exists that can detect all future viruses 

• There are viruses that no algorithm can detect 

 

• For security, we prefer something over nothing… 
• We still use AV products, despite their lack 

• We still investigate obfuscation to know what is possible practically 

Ω  

Combinational  

logic circuits 
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Protection Goals 

• Reverse engineering [2,3] = design recovery at higher 

abstraction level, understanding abstract relationships 

Given unstructured combinational logic C  Ω 

Key Abstractions: 

 

Topology 

Signals 

Components 

Control functions 

 

Discovery of known abstractions allows ID of 

other unidentified, unstructured patterns [4] : 

  Library modules / Repeated modules 

  Expected global structures 

  Computed functions 

  Control functions 

  Groupings of module outputs (bus structure) 

?? 
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Characterizing Security Properties 

• Practical definition of security → reducing or eliminating 

amount of abstract information present 

• Circuits built from predefined components 

• Primary adversarial reverse engineering goal 

 

• Security Property = Component Hiding:  

• Given original component configuration, remove or reduce 

information about component relationships to prevent recovery of 

original abstractions 

 

• Issues 

• Measuring the abstract information present 

• Worst-case scenarios 

• Measurement only focuses on one attack vector 
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Defining Components 

• Components are building block for 

virtually all real-world circuits 

 

• Given: 

• circuit C 

• gate set G 

• input set I 

• integer k > 1, where k is the number of 

components 

 

• Set M of components {c1,…, ck} 

partitions G and I into k disjoint 

sets of inputs and/or gates.  

 

• Four base cases  

• Based on input/output boundary of 

component and the parent circuit 
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Component Identification and Recovery 

C  Ω  C’ = O(C), C’  Ω  

We implement a version of the White algorithm[5] (O(n3)) to perform 

component identification  

Two step process: 

 1) Enumerating all candidate subcircuits (O(n!), n = # of gates) 

 2) Identifying known (library) components from candidates 
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Producing Security Properties 

• Two qualities of the obfuscator in view: 
• Given a publicly known algorithm (Kerckhoff’s principle), what effect 

does knowledge of the algorithm have on adversarial analysis?   

• Given the distribution of circuits produced by the algorithm, do 
variants have measurable component hiding? 

 

 

• Maximizing Randomness  
• Adversary does not benefit appreciably by knowledge of the 

obfuscating algorithm  

• Variants may or may not actually demonstrate component hiding 

 

• Maximizing Determinism 
• Adversary can use knowledge of the technique as input to the 

deobfuscating algorithm 

• Determinism can target the actual security property, i.e., 
component hiding 
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Selection/Replacement: A Random Approach 
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Component hiding manifests as an artifact of small, iterative 

selection/replacements in some experimental configurations 
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Observations from Empirical Study 

• Selection size and replacement size influence 

manifestation of hiding properties 

• Goal for replacement:  

• Uniform, random selection possibility from ALL possible circuits 

• Replacement libraries are static, generated out of band 

• Limitation: generating FULL circuit libraries for 4-5 gate 

circuits is the practical/workable limit 
• Disk storage/indexing/query time/generation time become issues 

• # of circuits related to integer series A005439, A00366 [the number of 

Boolean functions of n variables whose ROBDD contains at least n branch 

nodes] 

 # of GATES 
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Component Fusion: A Deterministic Approach 12 
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Component Fusion: A Deterministic Approach 

• Deterministic selection 
• Ensures replacement of entire circuit every experiment 

• Partitions the circuit into subcircuits  

• Hides known existing information 

• Uses component definitions to partition subcircuits  

• Ensures selection/replacement operations will overlap 

• Adds predecessor gates to each subcircuit 

• Deterministic replacement 

• Uses a randomized circuit synthesizer 

• Increases the speed of finding replacements 

• Implements subcircuit connections as a virtual black box  
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Component Fusion: Empirical Results 
• c6288 ISCAS-85 Benchmark 16-bit multiplier 

• Composed of 224 full adder components and 16 half 

adder components (hard test case) 

• With no protection, all components identified with a 

single pass in 1.15 minutes of ID algorithm 

• With component fusion, same ID algorithm does not 

identify any adder/half-adder components 

• 50 experiments using random (SSR), boundary blur 

(another deterministic method [6]), and component 

fusion 
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Component Fusion: Empirical Results 
• Average efficiency of obfuscation algorithm and variants 

 

~2 hours per variant 

Tradeoffs: speed/delay (levels) vs. size/power (gates) 
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Conclusions 

• Component fusion improves component recovery results 
37% over the best random selection/replacement 
technique  

 

• Gate size in variants was on average 350% larger than 
the original circuit; levelization ~75% increase 

 

• Future work 
• Reduce variant size further using integrated logic reduction 

techniques 

• Richer set of circuits… 

• Integrate random method with component fusion and other 
deterministic techniques 

• Integrate other analysis methods for component ID (machine 
learning, formal approaches like abstract interpretation) 

• Measure other attack vectors/analysis methods for signals, 
topology, control recovery 
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Questions 
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