

Air Force Institute of Technology

Develop America's Airmen Today ... for Tomorrow

Developing a Requirements Framework for Cybercraft Trust Evaluation

J. Todd McDonald Shannon Hunt

Center for Cyberspace Research Department of Electrical and Computer Engineering Air Force Institute of Technology Wright Patterson AFB, OH

Develop America's Airmen Today ... for Tomorrow

Research sponsorship by:

Cybercraft Initiative AFRL/RIGA Cyber-Operations Branch Rome Labs, NY

Develop America's Airmen Today ... for Tomorrow

"The mission of the United States Air Force is to deliver sovereign options for the defense of the United States of America and its global interests -- to fly and fight in Air, Space, and **Cyberspace**."

- Michael W. Wynne

Aircraft: Air Superiority

Spacecraft: Space Superiority

What is a Cybercraft?

Develop America's Airmen Today ... for Tomorrow

"A Cybercraft is a trusted computer entity designed to cooperate with other Cybercraft to defend Air Force networks."

- Cybercraft fleet
 - Composed of autonomous agents
 - Installed on every AF network device (1+ million agents)
 - Incorporate decision engines to rapidly make decisions and take defensive actions without human intervention
 - Command and Control network to pass commands, policies, environment data, payloads, etc.

What is required for a commander to *trust* a Cybercraft to act autonomously to defend military information systems?

Motivation & Goals

Develop America's Airmen Today ... for Tomorrow

- Can we create a reference framework for evaluating various trust models and their applicability for use in Cybercraft?
 - Can we link specific Cybercraft scenarios to specific trust model expressions?
 - Can we express and evaluate transitive trust for specific Cybercraft mission scenarios?

This research presents an approach for considering trust expression in relation to Cybercraft requirements, analysis, and design consideration

Aircia

Conceptual Architecture

Long Service Life Large Investment Wide Variety Of Missions Intense Scrutiny Attribution Authentication Reliability

Trusted platform for C3 Trusted view of cyberspace Trusted execution of commander's intent Hardware root of trust on every AF cyber asset

Cybercraft •Command •Control •Communications

Rapid Development Expendable Specific Effects Effectiveness

Cause Effects

ayload

Sensors Effectors Decision Engines

Cybercraft Domain

Develop America's Airmen Today ... for Tomorrow

Trust in Cybercraft

Develop America's Airmen Today ... for Tomorrow

- Why bother with trust (yuck, it's elusive) versus security anyway ???
 - Non-human autonomy / decision making
 - Ability to characterize human-like decision making process
- Root of trust (platform)
 - Hardware versus software protection (virtualization/OS level)
 - Transitivity from platform to payloads
- Trust in an agent's abilities (platform/payload)
 - Confidence in the data produced by an agent
 - Identify which agents may be compromised or are incompetent
- Limitation of powers (payload)
 - Policy-defined bounds for autonomous decisions
 - How not to create a DDOS threat from our own Cybercraft fleet
 - Establishing commander-level trust in boundaries
- Depiction of the environment (payload)
 - Combining data produced by different agents
 - Estimating the effectiveness of a Cyber-operation (Cyber BDA)

Transitive Trust

Develop America's Airmen Today ... for Tomorrow

• $A \rightarrow B \rightarrow C \rightarrow D \rightarrow E$

- Read A trusts B, who trusts C, who trusts D, who trusts E, therefore A trusts E
- Possibilities assessments
 - Platform to platform
 - Agent to agent (payloads)
 - Platform to agent (payload)
 - Platform to environment
 - Payload to environment

Root of Trust

Develop America's Airmen Today ... for Tomorrow

- Does the root of trust in the Cybercraft platform transfer to the other components of the system
 - OS
 - Network
 - Applications
 - Third-party software

Host Computer

Network Stack

Software Process Models vs. Trust Models

Develop America's Airmen Today ... for Tomorrow

Software Process Models

- Specification-based (waterfall)
 - Usage of prototyping
- Iterative / Evolutionary processes
 - Incremental delivery
 - Spiral development
 - Agile development
 - Rational Unified Process
 - Extreme Programming

Trust Models

- Allows for a mathematically way to gauge trustworthiness of interacting entities
 - Enable devices to form, maintain, and evolve trust opinions
 - Opinions are used for the configuration of the system
 - Incorporate Quality of Service (QoS) requirements
 - Whether or not certain transactions with take place or not (low – high risk)
 - Plan for the lack of a globally available infrastructure
 - Entities that are dynamic and anonymous
 - Human tailored
 - Subjective
 - Highly customizable

Bridging Trust and Requirements

Develop America's Airmen Today ... for Tomorrow

- How do we transition from user requirements to evaluating commander's trust?
- How do we express agent-based trust in terms of system usage and possible mission areas?
- We need models to precisely evaluate security assumptions, attacks, and risks within the Cybercraft architecture
- We need a mathematical approach to understanding transitive trust and root of trust questions specific to Cybercraft missions

"It is essential that regardless of the (trust) model chosen, the reason we want to use the model and our expectation of what it will provide in terms of security must be clearly defined."

Requirements Analysis

Develop America's Airmen Today ... for Tomorrow

- Explicit Cybercraft requirements are immature, therefore explicit *trust* model requirements are immature
- Solution: Provide iterative approach
 - Attack/Defense Trees
 - Visualize attacks on our networks and ways to defend them
 - Use Cases
 - Text describing step-by-step interaction between a user and a system

Use Case Name	Anti-Virus	
Scope	The network	
Level	Ensure anti-virus software is installed and up-to-date o	
	all machines	
Primary Actor	Cybercraft	
Stakeholders and Interests	Network Defenders	
Preconditions	Network is operational, up-to-date,	
Success Guarantee	All machines have anti-virus software loaded, opera- tional, and up-to-date	
Main Success Scenario	Cybercraft platform creates a payload to check anti- virus software on all machines in the network, if all machines have operational AV that is up-to-date, the scenario is successful	
Extensions	Cybercraft platform creates a payload to check anti- virus software on all machines in the network. Alternate scenarios: 1. If there is no AV software, the Cybercraft platform dispatches another payload to install AV software on the machine in question 2. If there is AV software installed, but not updated, the Cybercraft platform dispatches another pay- load to obtain correct updates from approved sites	
Frequency of Occurrence	Daily	
Miscellaneous	Assumptions are that the Cybercraft payload and plat- forms are trusted, the network is secure, all channels a Cybercraft uses are secure	

Trust Model Evaluation

Develop America's Airmen Today ... for Tomorrow

- Three main ideas of trust
 - initial trust
 - trust exchange
 - trust evolution
- Three models under view
 - hTrust (human Trust)
 - VTrust (Trust Vector)
 - P2P (Peer to Peer)
- Applying the models:
 - Evaluate fitness of models for Cybercraft trust questions
 - Apply specific scenarios

Trust Model	Initial Trust	Trust Exchange	Trust Evolution
hTrust	formation	dissemination	evolution
VTRUST	knowledge	experience	recommended
P2P	ratings generation	ratings discovery	ratings aggregation

Self-Protection

Current Scenarios

Develop America's Airmen Today ... for Tomorrow

- Scenario One transitive trust
 - How far can each model create a transitive trust chain (a → b → c → d → e ...)
- Scenario Two AV update
 - Case one: AV is installed on machine and up-to-date
 - Case two: AV is not installed
 - Case three: AV is installed but not updated

Agent	Value
Α	Cybercraft platform
В	Cybercraft payload check
С	Cybercraft payload update
D	Cybercraft payload install
Е	OS
F	Network
G	AV software on OS (agent E)
Н	Update place
Ι	AV software from network

Scenario 1 Analysis

Develop America's Airmen Today ... for Tomorrow

- hTrust chain fell apart after agent c
- P2P chain can be quite long
- VTrust depends on the values

VTrust initial values

Trustor Initial Recommendation Values			
$(A \rightarrow B)_t^N$	1.0		
$(B \rightarrow C)_t^N$	0.8		
$(C \rightarrow D)_t^N$	0.2		
$(D \rightarrow E)_t^N$	0.2		
$(E \rightarrow F)_t^N$	0.8		
$(F \rightarrow G)_t^N$	1.0		

VTrust final results

Recommendation Chain Results		
$A \rightarrow C$	0.80	
$A \rightarrow D$	0.16	
$A \rightarrow E$	0.032	
$A \rightarrow F$	0.0256	
$A \rightarrow G$	0.0256	

Scenario 2 Analysis

Case One: AV is installed on machine and up-to-date

Develop America's Airmen Today ... for Tomorrow

A, B, E, G

Agent	Value
А	Cybercraft platform
В	Cybercraft payload check
С	Cybercraft payload update
D	Cybercraft payload install
Е	OS
F	Network
G	AV software on OS (agent E)
Н	Update place
Ι	AV software from network

Scenario 2 Analysis Case Two: AV is not installed

Develop America's Airmen Today ... for Tomorrow

Scenario 2 Results

Case Three: AV is installed but not updated

Develop America's Airmen Today ... for Tomorrow

Reference Framework

Develop America's Airmen Today ... for Tomorrow

	hTrust	VTrust	P2P
Able to form, maintain, and evolve	Yes	Yes	Yes
trust opinions			
Incorporates QoS	Yes	Yes	Yes
Human tailored	Yes	No	No
Subjective	Yes	Yes	Yes
Highly customizable	Yes	No	Yes
Allows for transitive trust	No	Yes	Yes
Dynamic trust changing	Yes	Yes	Yes
Minimal resource demands	Yes	Yes	Yes

Some Contributions

Develop America's Airmen Today ... for Tomorrow

- We provide a unique approach to requirements definition based on:
 - Use Case Analysis
 - Attack/Defense Trees
 - Mission Level Task Breakdown
- We provide specific correlation between abstract trust models and the Cybercraft trust problem related to specific system requirements
- We implement and analyze specific models to demonstrate the utility of trust expression within the context of Cybercraft
- We define a reference framework for evaluating existing and future trust models as well as provide specific measures for analyzing transitive trust relationships in view of the Cybercraft platform and its root of trust

Develop America's Airmen Today ... for Tomorrow

