
Towards Working with Small Atomic Functions

Alec Yasinsac�1 and J. Todd McDonald��2

1 Department of Computer Science
Florida State University, Tallahassee, FL

yasinsac@cs.fsu.edu
2 Department of Electrical and Computer Engineering

Air Force Institute of Technology
jmcdonal@afit.edu

Abstract. Shannon’s notion of entropy remains a benchmark reference
for understanding information and data content of cryptosystems. Ide-
ally, secure ciphers maintain high entropy between possible plaintext -
ciphertext pairs. The one time pad, though perfectly secure in terms
of entropy, remains impractical in most general cases due to key man-
agement issues. We discuss in this paper the similar notion of function
entropy and examine its use on a small scale to provide perfect functional
secrecy. We illustrate how such small units of composition can form the
basis for obfuscating software transformations in a general, but highly
constrained sense.

Key words: atomic functions, functional entropy, obfuscation, software
protection

1 Introduction

In his seminal 1998 talk [1], Roger Needham lamented about the abdication
of simplicity. He quoted Christopher Strachey to point out: “It is impossible
to foresee the consequences of being clever”. Indeed, clever solutions are rarely
intuitive; otherwise they would be obvious rather than clever. Needham puts
his own stamp on it by saying: “if you did something in a straightforward way
it was more likely to be correct. The protocols devised in the early days were
not straightforward. They relied on clever inferences and arguments to convince
yourself that the goals had in fact been attained.”

In this paper we propose a return to simplicity. Why do we believe it is
possible to achieve simplicity when technology push and market pull demand
greater functionality, at lower cost, over a wider audience, in order to extract
a more exorbitant profit? Our foundational premise is that developing anything
“general purpose” creates complexity. Conversely, leveraging properties of atomic
functions provides a simple framework for protocol development.
� This work is funded in part by Department of Defense grant H98230-06-1-0232 and

Army Research Office DAAD19-02-1-0235.
�� The views expressed in this article are those of the author and do not reflect the

official policy or position of the United States Air Force, Department of Defense, or
the U.S. Government

2 Yasinsac and McDonald

1.1 Software Engineering

A major step forward in the computing field occurred when scientists realized
that they could use computers to simplify computing process description. The
conceptually simple notion involved writing programs to perform a well-defined
function in a structured, but natural language that was more understandable
to humans than was machine code, then mechanically translating the natural
language description into an equivalent, machine executable version. The field of
Software Engineering (SWE) continues to address approaches to understanding
systems of such programs.

We may think of the SWE goal as trying to reduce functional entropy. SWE
leverages abstraction and standardization to elevate algorithms to higher con-
ceptual levels and to generate “look and feel” commonality that promotes under-
standing. Neither of these approaches themselves inherently reduces complexity.
While abstraction reduces complexity for the higher end user, it does so at the
cost of precision, injecting possible ambiguity and loss of nuance.

1.2 Binary Relations and Function Tables

While mathematicians are accustomed to working with algorithmic function rep-
resentations, functions are more comprehensively (though less elegantly) repre-
sented as binary relations, i.e. as ordered pairs arranged as function tables. In-
deed, it is because function tables can comprehensively and systematically define
all functions that this representation best suits our interests. Additionally, it is
important to note that a function table represents an atomic function. That is,
while many algorithms may generate a given function table, every deterministic
algorithm implements exactly one function table.

More precisely, we are interested in function tables as follows: for integers i,
m, and n, and the set of integers X = 0..2n, a function table Sn,m is an ordered
set of ordered pairs for i = 1..2n, (xi, yj), where xi = i and yj ∈ X. S∗n is the
set of all function tables of size of n input bits and m output bits.

This definition allows us to address classes of same-sized functions, with input
and output lengths as the class-defining factors. Operating on such monolithic,
yet general, functions simplifies many concepts and operations. For example,
consider the function composition operation (◦), defined in the normal way (i.e.
f ◦ g = f | g = f(g(·))). In this monolithic environment, the composition op-
eration naturally avoids the usual range-domain mapping issues. Thus we know
that we can compose any two function tables x and y as long as (x, y) ∈ S∗n and
we also know that S∗n is closed under composition.

Much as symmetric data encryption technology generally derives its cryp-
tographic strength from the exclusive-or (XOR) operation, methods on atomic
functions derive entropy strength from function composition. Intuitively, since
every function table is atomic and function table composition is a closed op-
eration, every composition is atomic. These notions along with the ability to
randomly select function tables provide the foundation for perfect function en-
cryption.

Towards Working with Small Atomic Functions 3

2 Perfect Functional Entropy

Like data entropy, we can measure function entropy by analyzing random se-
lection. This means that we must define a finite population and show that our
obfuscation is indistinguishable from a random (unbiased) selection from that
population. Defining a suitable finite population of functions represented as pro-
grams is problematic, because programs and functions can take so many different
forms. While circuits are less obtuse than programs, they share some many of
the same complexities. However, the ultimate functional representations, func-
tion tables, offer several positive “selection” properties.

Unlike programs or circuits, tabular function representation allows us to sys-
tematically capture and enumerate all functions of a given input/output size,
as we illustrate below. Function enumeration ensures that we can make a ran-
dom function selection [2] and that we can show indistinguishability between
our obfuscation and a randomly selected function; the result is an encrypted
function.

2.1 Function Table Illustrations

Function tables reflect atomic functionality. Though many algorithms may im-
plement a given functionality (hereafter termed “operation”) there is only one
function table for that operation. We illustrate this notion by looking at small
input-output sized operations; in fact, we start with the smallest possible: one bit
input, one bit output operations. We do this because this function size clearly
illustrates how we define a comprehensive finite operation population, in this
case S∗1,1.

There are exactly four single bit input-output operation function tables that
reflect the following semantic transformations:

1. Preserve the input bit
2. Flip the input bit
3. Flip 1, preserve 0
4. Flip 0, preserve 1

Table 1 enumerates one-bit operation function tables. As we mentioned ear-
lier, many (in fact infinitely many) operations could generate each function table,
e.g. the operation “or(x, 0)” also generates S1. We selected the listed operations
as representative to add clarity to the table. We emphasize that these four func-
tion tables are distinct and they comprehensively capture all possible one-bit
operations. Given an efficient program that computes a one-bit function, it is
easy to determine which function table the program implements: simply exercise
the program once with input 0 and once with input 1. However, it is not as
clear whether or not we can infer anything more if, for example, we know that
the executing program is actually a composite function. It turns out, knowing
there is a composition may allow us to glean some information about the two
composed operations.

4 Yasinsac and McDonald

Table 1. Function Tables for All 1-Bit Functions

We know that any one-bit function composition (say p | q) must produce
another one bit function (say f) that must also reflect one of the four given
function tables. Specifically, p, q ∈ S∗1 and (f = p | q) ⇒ f ∈ S∗1 . Table 2
contains all sixteen possible one-bit function compositions that correspond to
the four, one-bit function tables of Table 1 (i.e. p1 and q1 implement S1, p2 and
q2 implement S2, etc.).

Let’s say that we want to deliver a function that computes p to an adversary,
but we want to protect p itself from that adversary. We can randomly select
a second function that [atomically] computes one of the four one-bit function
tables (and call it q), compose it with p in order to mask p and generate the
corresponding function table. For example, from Table 2 we see that if we desire
the adversary to execute p3 (which corresponds to function table S3) and we
randomly select a q that computes S2 (q2), the composition p3 | q2 computes S4.
Thus, if we send function p4 to the adversary, the adversary cannot determine
whether we desire to compute p1 | q4, p2 | q4, p3 | q2, p3 | q4, p4 | q1, or p4 | q4,
since each of these compositions compute S4.

If our purpose is to protect p from the adversary, we mask p by randomly
selecting q and composing p and q. This construction ensures that the adversary
can only guess the intended program p with no better than 50% likelihood. We
also note that to accomplish 50% likelihood, the adversary must compute all
function tables S∗n, which demands n-factorial computation.

We recognize that if we randomly select the masking operation q, we run the
risk of also masking p’s functionality. For example, if we utilize q3 as the masking
function, the composition will always output zero regardless of p’s functionality.
Similarly, compositions with q4 will always return 1, preventing recovery of p’s
computation. Of course this limits the value of the construction.

On the other hand, if we only utilize q1 (preserve 0 and 1) or q2 (flip 1 and 0)
as our masking operation, the adversary that either captures the input-output
mappings or is in possession of the composition, can still not guess p with better
than 50% likelihood, yet we can recover p’s result if we receive the composition’s

Towards Working with Small Atomic Functions 5

Table 2. Function Tables for Compositions

output and know the key. In the example above, if our intended operation is
p3 and the masking function is q2, we send the adversary the corresponding
(atomic) composition, p4. To recover the p3 result, feed the returned output
into q2. This leads us to introduce three definitions.

Definition 1 (Function Preservation and Operation Invertibility). The
target operation (p) of a composed operation (p′ = O(p) = p | q for some q)
is preserved if and only if the masking operation (q) is invertible. The masking
operation is invertible if and only if it is one-to-one, that is, if it maps each input
to a distinct output.

Definition 2 (Perfect Obfuscation). An operation p′ is a perfect obfuscation
of p if and only if an adversary when given p′ can compute p with no better than
50% probability.

Definition 3 (Perfect Operational Obfuscation). A function p′ is a per-
fection functional obfuscation of p (notationally O(p)) if and only if:

1. p′ is a perfect obfuscation of p and
2. p′ preserves the function p

This illustrates our new computation model, where the obfuscator produces
a function composition. If the composition preserves p, O(p) also produces the
recovery operation.

6 Yasinsac and McDonald

Symbolically, Given q, ∃q−1 ⇒ (p′ = O(p) = (p | q, q−1)), else p′ = O(p) =
p | q and p′ does not preserve p. Algorithm 1 generates an encrypted one bit func-
tion. Perfect functional obfuscation is similarly as strong for protecting programs
as Shannon’s perfect secrecy [3] is for protecting data.

Algorithm 1 (A Perfect One-bit Functional Obfuscator).

1. Identify the function table entry from Table 1 corresponding to the target
function and select the corresponding circuit (e.g. p1, p2, etc.)

2. Randomly select a masking function from q1-q4
3. Identify the function table entry (S1-S4) from Table 1 corresponding to the

composition of the target function and the randomly selected circuit (e.g. p1,
p2, etc.)

4. Select p′ as the circuit that corresponds to the selected function table entry
in step 3.

2.2 Extending Perfect Functional Obfuscation to Larger Functions

Function table enumeration grows exponentially on the input-output size, so we
only extend our preliminary exploration/illustration once, to 2-in, 2-out func-
tions. There are 256 distinct operations with two bits input and two bits output.
We show the 24 2-bit input/output function table entries for those that are
invertible in Table 3.

Table 3. Invertible 2-bit by 2-bit Operations

As indicated in the table notes, function tables 1-10 are self invertible. That
is, if you compose any 2-bit input/output operation p with e.g., q6 so that
r(·) = q6(p(·)), for example, you can recover p’s output by computing q6(r(·)).
On the other hand, tables 11-24 (marked 1a − 7b) are pair-wise invertible, so
for example, you may recover p’s output from r(·) = q17(p(·)) by computing
q18(r(·)). We illustrate these examples in Table 4, where we select p (in column 1)
from the non-invertible population. Column 2 contains q6, which is an arbitrary
masking operation. Column 3 is p composed with q6; this is the module that we
would send to a mobile host. Column 4 is r composed with q6, which illustrates

Towards Working with Small Atomic Functions 7

that q6 is self invertible, i.e. that q6(q6(p(·)))) = p(·). Columns 5 through 7 are
the analogous demonstration with jointly invertible operations, q17 and q18, i.e.
that q18(q17(p(·)))) = p(·).

Table 4. Operation Obfuscation Examples

The fundamental point here is that the composed function (q(p(·))) is im-
plemented by an atomic function, r. There is no “seam” between the composed
functions that dynamic analysis or reverse engineering can discover. Why does
that matter? It turns out that this construction resolves two classic security
problems.

Consider an application that collects and analyzes data at a remote host
and then transmits a computed result to a central location. In our model, the p
operation captures the data collection and analysis functionality, while q provides
data privacy protection, say through encryption. Our composition construction
r = p | q hides p’s functionality from the remote host with two fundamental
properties:

1. Because r is an atomic operation, there is no seam to find that could divulge
p’s output.

2. Similarly, since r is an atomic operation, there is no systematic approach an
adversary can undertake to divulge any processing detail, such as a key that
q may use for data protection.

Both of these properties realize resolutions to classic computer security prob-
lems. In combination, they allow us to construct mobile code operating on a
malicious host to accept input from that host, conduct a meaningful function
on the input, and encrypt the output for transmission. Even with the malicious
host in complete control of the computation, it cannot separate the encryption
process from the functional process nor can it conduct any meaningful key-based
cryptographic analysis. If q is an encryption process, p’s output is returned by
the corresponding decryption process r | q−1, i.e., we compute the partial result
p(x) as: p(x) = q−1(r(x)).

8 Yasinsac and McDonald

3 Perfect Program Encryption Process, Scope, and
Limitations

The Barak program obfuscation impossibility result [4] is widely recognized as
a condemnation of obfuscation techniques in general. Fortunately when needed,
obfuscation is not performed in general, but in specific. We show that general
obfuscators exist that provide perfect functional protection, though not without
constraints. We address those constraints and our method’s applicability in this
section.

3.1 Function Performance and Size

Perfect function encryption requires that the dispatcher generate a function table
for the composed function. From a processing standpoint, we generated a 32-bit
(padded) input function table for the Data Encryption Standard on a standard
desktop computer in about 24 hours. Each additional bit approximately doubles
the computation time, but increased computation power and parallelism could
substantially elevate the input size that we could compute.

While function table construction is computationally intensive, the execu-
tion code will be a computationally efficient table look-up. Thus, in our scheme
the composition performance is very fast, however at the expense of storage
demands. Function table storage size is exponential on input length. 32-bit func-
tions form .5 Gigabyte function tables. One gigabyte flash memory is relatively
inexpensive, so hand held devices could employ this technology for up to 40-bit
computations. However, the cost/benefit advantage of moving large executa-
bles (mobile code) across a network is questionable. 24-bit computations with 2
Megabyte function tables may make more sense for network applications.

3.2 Adversarial Computational Capabilities and Limitations

This is a particularly important section in this paper that captures a fundamen-
tal and confusing aspect of our method. In discussions with colleagues, confusion
often arises because an adversary may be able reveal the input that produced a
given output from the perfectly encrypted function. This seems to contradict the
foundational notion of [data] encryption. The essential point here is that func-
tion encryption does not intend to protect data confidentiality ; rather it protects
against the adversary understanding the code’s functional intent. Of course, be-
cause this protection ensures that there is no seam between the two processes
embedded within the function and it prevents an adversary from revealing an
embedded encryption key, perfect function encryption can protect partial result
confidentiality, as we mention earlier.

We now identify several adversarial capabilities. Consider first, an adversary
that maliciously possesses a device that contains perfectly encrypted function
composition. Because the adversary possesses a copy of the composition and
because our approach limits input size, given reasonable resources and time, the

Towards Working with Small Atomic Functions 9

adversary can compute the composition’s function table. Thus, the adversary
knows the computational result for every input. Using this information, the
adversary could introduce selected input to generate any desired output from
the captured device. However, if the composition operation (q) is an encryption
operation, this input-output mapping does not leak any information about the
functional operation (p), so this attack would accomplish nothing more than
blind disruption.

Additionally, if the adversary collected device output generated before the
compromise, they could use the function table to determine the input for the
corresponding collected output. Again, this illustrates that our result does not
(and does not intend to) provide traditional data confidentiality. In fact, in
mobile code applications, the host environment is expected to provide (thus to
know) the data that is input into the device. Again for emphasis, we do not
intend to hide the process input.

Conversely, while the adversary may be able to compute the composition’s
function table through black box analysis, this function table alone does not
expose the composed operations. Since the composition is an atomic operation,
there are no embedded hints for an adversary to detect (e.g. the seam and key
we mentioned earlier). Additionally, the control flow of all atomic operations is
identical (table lookup), so neither static nor dynamic code analysis can leak any
meaningful functional details. Similarly, compiler optimization or other analysis
can reflect no functional distinctions. Table 5 summarizes function encryption
adversary capabilities and limitations.

Table 5. Adversary Capabilities and Limitations Given a [Composite] Encrypted Func-
tion

3.3 Generality

Composing atomic functions for function encryption is limited in scope to small
input/output sized functions. However, our method is otherwise uniformly gen-
eral in the sense that it protects any program of the given size; in fact, it garners
its perfect strength from that generality. Our approach requires that we enu-
merate all functions of a given size without respect to any algorithms that im-
plement those functions. Systematic enumeration ensures uniform distribution,
essentially eliminating bias in the selection process.

10 Yasinsac and McDonald

3.4 Strength

As we demonstrated above, if an adversary uses an encrypted function to gen-
erate a function table and if they know that the evaluated function was created
through composition, they may be able to gain information about the possi-
ble composed functions. To recognize this correlation, they must construct the
potential composition function tables. Constructing all function tables in S∗n is
super exponential on n. For small n, this is not decisive, e.g. for n = 16, nn = 264,
but for thirty two functions (2190), this is computationally infeasible. Addition-
ally, once all tables are derived, constructing all possible compositions requires
an additional n-factorial computations.

If we assume that an adversary is intent on conducting this analysis, as we
described, even if an adversary constructs S∗n and generates S∗nxS∗n possible com-
positions, the process guarantees that the adversary cannot identify the functions
used in the composition with greater than 50% chance. Thus, our program en-
cryption provides absolute protection against even computationally unbounded
adversaries.

Moreover, a watermark of any effective program obfuscation mechanism must
protect even a program that prints its own source code [4, 5]. Since the obfus-
cation’s output is always encrypted, our mechanism protects program intent for
even this classic program.

4 Conclusion

There are theoretical and practical reasons for desiring to create programs with
[apparent] high functional entropy. Though general program obfuscation in the
virtual black box paradigm does not exist, we introduce a different computational
model where general, though constrained obfuscation is possible. In fact, we show
that provable, perfect obfuscation is possible and we introduce the term function
encryption to describe its manifestation. To generate obfuscation metrics and
proofs, we introduce the notion of functional entropy, and we show how our
approach to function encryption is analogous to Shannon’s perfect secrecy for
data encryption. Though this method is only practical for functions with very
small input and output sizes, its theoretical impact challenges the Barak result
and suggests that for small functions, obfuscation is possible.

History shows that classic programs (and protocols) are less subject to failure
than their more complex counterparts. We foreshadow an approach to narrow
application variability, for example by restricting functions to a fixed input-
output size. We illustrate this functionality utilizing atomic functions.

References

1. Needham, R. M.: Logic and Over-Simplification. Proc. of the Thirteenth Annual
IEEE Symposium on Logic in Computer Science, 21-24 June (1998) 2–3

2. Goldreich, O., Goldwasser, S., Micali, S.: How to Construct Random Functions.
Journal of the ACM (JACM), Vol. 33-4. (1986) 792–807

Towards Working with Small Atomic Functions 11

3. Shannon, C.E.: Communication Theory of Secrecy Systems. Bell System Technical
Journal, Vol. 28-4. (1949) 656–715

4. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (Im)possibility of obfuscating programs. Proc. of the 21st Annual Int’l
Cryptology Conference on Advances in Cryptology, Lecture Notes in Computer
Science, Vol. 2139. Springer-Verlag (2001) pp. 1–18

5. Thompson, K.: Reflections on trusting trust. Communications of the ACM. 27-8
(1984) 761-763

