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Abstract

In recent years, the use of ontologies in
information systems has dramatically in-
creased. Ontology design and mainte-
nance, nonetheless, have been and still
are daunting tasks. We argue that ontolo-
gies need to evolve, or else the semantic
infrastructure of the information system
will no longer support the organization’s
changing needs. Therefore, in this work
we aim at tackling the problem of ontology
evolution. We propose to use (machine-
generated) contexts as a mechanism for
quantifying relationships among concepts.
To do so we compare contexts that are as-
sociated with ontology concepts. Our ap-
proach is unique in two aspects. First, we
base it on a combination of ontologies and
contexts, where contexts replace, to a cer-
tain extent, the role of the ontology engi-
neer in the process. Second, we provide
the ontology administrator with an explicit
numeric estimation of the extent to which
a modification “makes sense.” We moti-
vate our work with examples from the field
of eGovernment applications and support
our model with an empirical analysis, us-
ing real-world traces of news syndication.

Keywords: Ontology evolution, Contexts, Seman-
tic interpretation, eGovernment applications

1 Introduction

In recent years, the use of ontologies in informa-
tion systems has dramatically increased. Ontolo-
gies aim at providing a complete semantic under-
standing of a domain, enabling powerful reasoning
that can serve as a basis for a semi-automatic deci-
sion making process. This strength, however, also
constitutes the main obstacle to widespread adap-
tation of ontologies. Ontology design, for one, has
been and still is a daunting task. It requires collab-
oration of experts within the organization with on-
tology engineers. The former provide the domain

knowledge while the latter bring in the modeling
ability. Such a collaboration may consume many
organizational resources in terms of both time and
monetary units. This difficulty is rooted in the
need for a careful, accurate, and complete design
of an ontology, a task that requires years of train-
ing and cannot be trusted to the organization ex-
pert.

In this work we address the problem of ontol-
ogy evolution. We acknowledge that building an
ontology from scratch requires a joint effort of ex-
perts, internal to the organization, and ontology
engineers, external to it. We envision a new or-
ganizational role, called anontology administra-
tor, the parallel role to a database administrator,
to handle ontology evolution. An ontology ad-
ministrator is an IT professional with some train-
ing in maintaining ontologies and can therefore be
trusted with evolving ontology from within the or-
ganization. In this work we provide a model for
ontology evolution in which given an ontology re-
lationship (e.g., disjoint, representing the knowl-
edge that an instance of one concept cannot be an
instance of another) and operands (e.g., two con-
cepts or classes), an ontology administrator is pro-
vided with a quantified response regarding the ex-
tent to which the given relationship is valid for the
given operands (see Figure 1).

To assist us in this task we utilize contexts (Mc-
Carthy, 1993), system-generated descriptors that
serve as local views of a domain. Such a local
view can be generated, for example, by analyzing
a document that is relevant to an ontology concept.
In this work we use contexts as a light-weight
mechanism for assisting ontology administrators
in making minor modifications to existing ontolo-
gies. We propose to use (machine-generated) con-
texts in quantifying relationships among concepts.
Therefore, the validity of a relationship is mea-
sured by comparing the contexts that are associ-
ated with the operands. We believe that such a
solution would significantly assist in the support
of ontology evolution, to the extent that an ontol-



ogy administrator will be able to perform (at least
minor) ontology evolution without the use of an
ontology engineer. Our approach is unique in two
aspects. First, we base it on a combination of on-
tologies and contexts, where contexts replace, to a
certain extent, the role of the ontology engineer in
the process. Second, we provide the ontology ad-
ministrator with an explicit numeric estimation of
the extent to which a modification “makes sense.”
To the best of our knowledge, none of the mod-
els for semi-automatic creation of ontologies (e.g.,
bootstrapping (Ciravegna et al., 2003)) or for on-
tology evolution (e.g., (Tsatsaronis et al., 2005))
make use of such quantified measures. We believe
this feature is imperative in providing ontology ad-
ministrators with a measure of validity in evolving
ontologies.

The main contribution of this work is thus
twofold. On a conceptual level, we introduce an
ontology verificationmodel, aquantified model
for automatically assessing the validity of relation-
ships in an ontology. The quantification allows the
ontology administrator to define a level of valid-
ity for verifying each relation type in the ontology.
On an algorithmic level, we provide a mapping
of several ontology operators for defining relation-
ships into context relationships.

The motivation of this work stems from QUA-
LEG1 and TERREGOV2 eGovernment projects.
In these projects, ontologies are used to drive gov-
ernment activities. For example, the relevance of
citizen online debates to this or that role in a gov-
ernment can be determined by extracting the con-
text of a debate and mapping it to an ontology
of government roles (i.e., a civil servant). Con-
sider an eGovernment application describing the
process by which government policies are deter-
mined and revised. An ontology is specifically de-
signed and tailored by an ontology engineer. A
change in this process, even a minor one from a
design point of view,e.g., adding one more gov-
ernment role as a participant in a meeting, may re-
quire (depending on the original ontology design)
a renewed collaboration of civil servants with on-
tology engineers to apply changes to the ontology.
Additional hurdles can be caused by multi-lingual
environments (such as in the EU and Canada) and
multi-cultural environments (e.g., in border cities).

Throughout this paper, we motivate our work

1http://www.qualeg.eupm.net/
2http://www.terregov.eupm.net

with examples from the eGovernment domain.
However, due to the absence of large scale data
sets for this domain, we support our model with
an empirical analysis using real-world news syn-
dication traces. The rest of the paper is organized
as follows. We start with the preliminaries, for-
mally defining ontologies and contexts in Section
2. In Section 3 we introduce the ontology veri-
fication model, followed by a proposal of a map-
ping of the ontology verification problem to con-
texts in Section 4. We then provide in Section 5
some empirical experiences. We conclude with a
short summary in Section 6.

2 Ontologies And Contexts

In this work we provide a specific algorithm for
automatically verifying ontological relationships
from the work of (Noy and Klein, 2004). The un-
derlying ontology model is therefore that of (Gru-
ber, 1993): anontologyis an explicit specification
of a conceptualization of a domain. We assume
reader familiarity with basic concepts in concep-
tual modeling.

We define a descriptorci as an index term used
to identify a record of information. It can con-
sist of a word, phrase, or alphanumerical term.
A weight wi ∈ < identifies the importance of
descriptorci index term in relation to the record
of information and therefore provides a refined
model for evaluating the relationships between
contexts. For example, we can have a descriptor
c1 = Financial, andw1 = 16. A descriptor set is
defined by a set of pairs, descriptors and weights
defined by{〈ci, wi〉}i.

A contextC =
{
{〈cij , wij〉}i

}
j

is a set of finite
sets of descriptorscij from a domainD with ap-
propriate weightswij , defining the importance of
cij . For example, a contextC may be a set of words
(henceD is a set of all possible character combi-
nations) defining a documentDoc and the weights
could represent the relevance of a descriptor to
Doc. In classic Information Retrieval,〈cij , wij〉
may represent the fact that the wordcij is repeated
wij times inDoc. Our work uses the context ex-
traction algorithm of (Segev, 2005), which extracts
contexts from documents using query expansion
methods.

The context of a class is defined as a set of
contexts describing instances that belong to this
class. Unlike other work related to bootstrapping
(Ciravegna et al., 2003), in our work contexts are
not instances of ontology concept but rather rep-



resentatives thereof. Following (Segev and Gal,
2005), we define a class contextCCL of a class
CL to be the union of its instance contexts.

3 Ontology Verification

Ontology verificationis the process by which se-
mantic relationships are identified by the ontology
administrator. We term this process verification
since we assume an ontology exists and may need
to evolve. Therefore, semantic relationships in an
ontology need to be continuously monitored and if
necessary, revised. Here we use the work of (Noy
and Klein, 2004) on ontology changes and assume
a given closed set of operatorsOT , to be applied
on a set of operandsOD, taken from the set of
all ontology elements. As an example, a change
operator may be thedisjoint operator, resulting in
the creation of a semantic relationship called “dis-
joint” between two classes, given to it as operands.

Figure 1 provides a pictorial representation of
the process. Formally, ontology verification is a
function OV : OT × OD∗ → [0, 1]. Ontology
verification is given as input a hypothesis regard-
ing the possible operator to be applied to one or
more operands and returns a level of certaintyµ re-
garding the truth in this hypothesis. A certainty of
1 indicates full certainty in the hypothesis, while
a certainty of0 means that the hypothesis is def-
initely incorrect. In Figure 1, the ontology ver-
ification function determines that the disjointed-
ness of classesCL1 andCL2 has a certainty level
of 0.9. An example of the use of the model can
be that of an ontology administrator who would
like to analyze a local government concept rela-
tionship. She supplies a set of documents repre-
senting two concepts, such asSocial Service and
its subclassHousing Service, and receives a dis-
joint verification level of0.8 in the eGovernment
ontology based on this representative set of doc-
uments. A possible outcome of the verification
might be adding this relationship into the ontol-
ogy. In this work we aim at providing a support
for the ontology administrator using automatically
generated contexts.

4 Mapping Ontology Verification To
Context

Having introduced ontology verification, we now
focus on the details of change operators. Noy and
Klein (Noy and Klein, 2004) describe a set of 22
ontology change operators and their impact on on-
tology elements (both classes and instances). For
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Figure 1: Ontology Verification Model

seven of these operators we show how verification
can be accomplished using contexts. Verification
of the remaining operators is left open for future
research. The seven operators can be grouped into
two groups as follows:
Hierarchy linking and restructuring In hierar-
chy linking one class becomes a superclass of
another, making the latter a subclass of the for-
mer. Hierarchy restructuring involves reversing
the roles of a superclass and a subclass.
Disjoining, merging, and splitting classesA dis-
joint operator involves adding a disjoint link be-
tween two classes. Merging two classes involves
joining all instances of both classes into a single
class. Splitting entails the partition of instances of
one class into several classes.

For each operator group, we now provide an
instantiation of the verification function, defin-
ing a level of certaintyµ using context compar-
ison. Two principles guide us in determining
the specific formulae for computing levels of cer-
tainty. First, we ensure that extreme cases receive
extreme certainty values (in particular,µ=0 and
µ=1). The second principle is that of Occam’s ra-
zor; thus we aim at generating as simple a formula
as possible to specify intermediate values.

4.1 Hierarchy Linking and Restructuring

Let CL be a class andI = {I1, I2, ..., In} be a
set of instances. We denote byCCL the context of
a classCL and by|CCL| the context cardinality.
Similarly, for an instanceIi, we denote byCi its
context and by|Ci| the context cardinality.

Given two classes,CLi andCLj , if CLi is a
subclass ofCLj , then its context should be con-
tained in the context ofCLj . This is because an
instance ofCLi is also an instance ofCLj and
therefore has a broader context than an instance
of the superclass. Therefore, we compute the cer-
tainty of a hypothesis thatCLi is a subclass of



CLj to be

µSub-Sup=

∣∣∣CCLi ∩ CCLj

∣∣∣∣∣∣CCLj

∣∣∣
In one extreme case, ifCCLj ⊂ CCLi , then∣∣∣CCLi ∩ CCLj

∣∣∣ =
∣∣∣CCLj

∣∣∣ and µSub-Sup = 1.

At the other extreme, ifCCLi ∩ CCLj = ∅,
then

∣∣∣CCLi ∩ CCLj

∣∣∣ = 0 and µSub-Sup = 0
as well. Removing a hierarchy link is a re-
verse operator of the linking operator. In the
eGovernment ontology, we can see an example
for classesOrganization, Hospital, Medical
Social Center, andMunicipal Center as hav-
ing theSub-Suprelation, whereOrganization is
the superclass. However, differentµ values may
relate to each of the subclasses ofOrganization.
The ontology administrator can set a threshold for
µ to determine the relationship validity.

When determining a hierarchy restructuring, we
analyze the number of overlapping contexts be-
tween a subclass and a superclass, similarly to the
Sub-Supoperator. Here, though, we reverse the
roles of the subclass and superclass. Thus, given
two classesCLi andCLj , CLi is a subclass of
CLj , movingCLi up the hierarchy (or symmetri-
cally movingCLj down the hierarchy) has a cer-
tainty level of

µup =

∣∣∣CCLi ∩ CCLj

∣∣∣
|CCLi |

It is worth noting thatµup for movingCLi up the
hierarchy is the same as determining thatCLj is
a subclass ofCLi. When moving up the hierar-
chy, one more decision may need to be taken. As-
sume thatCLj is a subclass of some third class
CLk. When we moveCLi up, we need to con-
sider whetherCLi should become a subclass of
CLk. If this is indeed the case, then due to the
transitivity of the IS-A relationship,CLj should
be disconnected fromCLk. In the previous ex-
ample, when examining theMunicipal Center
class an ontology administrator may decide that
Municipal Center should become a superclass
of three sibling classes but not a superclass of the
Organization class.

4.2 Disjoining, Merging, and Splitting
Classes

Two classes,CLi and CLj are disjoint if their
contexts do not overlap. Therefore, we can com-

pute the certainty of aDisjoint operator among
two classes to be

µDisjoint = 1−

∣∣∣CCLi ∩ CCLj

∣∣∣∣∣∣CCLi ∪ CCLj

∣∣∣
If CCLi = CCLj , thenCCLi ∩CCLj = CCLi ∪CCLj

and thusµDisjoint = 0. If CCLi ∩ CCLj = ∅, then∣∣∣CCLi ∩ CCLj

∣∣∣ = 0 and thusµDisjoint = 1.

It is worth noting that whileDisjoint is a sym-
metric operator, the hierarchy linking and restruc-
turing (Section 4.1) are directional operators. This
is reflected in the different methods for computing
µSub-Sup, µup, andµDisjoint, where the denomi-

nator for the former is
∣∣∣CCLj

∣∣∣ (the super-class con-

text cardinality) and for the latter is
∣∣∣CCLi ∪ CCLj

∣∣∣.
When two classes are merged, their contexts

are analyzed to identify overlappings. Thus, the
merge operator can be considered the reverse op-
erator of disjoint, yielding a certainty level com-
puted as follows:

µMerge= 1− µDisjoint =

∣∣∣CCLi ∩ CCLj

∣∣∣∣∣∣CCLi ∪ CCLj

∣∣∣
There can be multiple variations of splitting

two classes. In one variation, an ontology ad-
ministrator provides the verification function and
two groups of instancesI ′ = {I1, I2, ..., Im} and
I ′′ = {Im+1, Im+2, ..., In}, constituting a parti-
tion of the instances of a classCL. For such a
variation, we need to generate a class context for
I ′ andI ′′ and then determine if they are disjoint
or not. Therefore, computing the certainty level of
this variation of theSplit operator is identical to
that of theDisjoint operator.

In a second variation no instance of partition-
ing is given. We need first to determine the best
partitioning of the class, using a statistical method
such as the K-Means algorithm (withK = 2), and
then computeµSplit as before. While the same
function is used to determine class split and dis-
jointedness, these operations are not equivalent.
An ontology administrator is likely to determine
to split classes with a lower level of certainty than
that needed for establishing a disjoint relationship.
An eGovernment example forMerge can be the
unification ofEducation with School.
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Figure 2: RSS Relations

5 Experiences With Context Based
Ontology Verification

Our experiences are based on data from Reuters
and RSS news traces. In these data traces,
data were originally partitioned to topics with
no ontological relationships. The Reuters data
set was taken from a publicly available trace
(http://about.reuters.com/researchandstandards/
corpus/). We chose 10 news topic categories (re-
ferred to hereafter as classes), for a total of 3,125
data, where a datum is a Reuters news article. The
RSS trace was collected during August 2005 from
the CNN Website. Here we chose 10 news topic
categories for the total of 9,920 data, where each
RSS news header or descriptor constitutes a da-
tum. The main difference between the Reuters and
RSS traces is the datum size. We generated a con-
text for each datum and each class using an auto-
matic context extraction algorithm (Segev, 2005).
The number of context descriptors generated from
each datum was set to 10. The data size per class
used for RSS varied from 73 to 1,911 per class,
while for Reuters it varied from 126 to 510.

In the experiment we calculated for each class
the number of contexts that overlapped with the
other seven classes. This asymmetric comparison
gave, for any two classesCLi andCLj , the metric

of
∣∣∣CCLi ∩ CCLj

∣∣∣ and
∣∣∣CCLi ∪ CCLj

∣∣∣. Given two
classes and their associated contexts, we analyzed
the certainty level of all the operators for all the
class pairs, using the formulae given in Section 4.
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Figure 3: Reuters Relations

We first analyze linking. Figure 2 presents
the RSS class relations hierarchy created for
µSub-Sup≥ 0.8 andµSub-Sup≥ 0.5. Similarly,
Figure 3 presents the Reuters class relations hi-
erarchy created forµSub-Sup≥ 0.7, µSub-Sup
≥ 0.6, and µSub-Sup≥ 0.5. As the value of
µSub-Supdecreases, the hierarchy and the rela-
tions between the classes become more elaborated.
For example, in the RSS data forµSub-Sup≥ 0.8
the superclassMoney Latest has four subclasses.
If we examine the same classes for a lower verifi-
cation level ofµSub-Sup≥ 0.5 we receive a three
level hierarchy. Similar results were observed for
the Reuters data.

Analyzing the content of the data in the different
classes of the Reuters data set, we notice that the
data setCorn actually discusses sale prices and
purchase quantities and thus matches the relation-
ship with Money Fx. Similarly, Crude is dis-
cussed here as raw material, which has no direct
relation with the class ofEarn but does have a re-
lation withShip, the shipment ofCrude material.

Comparing the results to the content analysis at
a level ofµSub-Sup≥ 0.5, we see thatShip is
a superclass for all the shipment topics displayed,
which includeMoney Fx andCrude. Money
Fx includes another set of shipment and economic
topics that form the subclassesSugar, Corn, and
Money Supply. Earn, conversely, includes only
the subclass ofMoney Supply. Money Fx,



Class Sets Merge Super/Subclass Disjoint

Money Latest 19.2% 86.7% 80.8%

Money News International 19.2% 19.8% 80.8%

Money News Economy 12.1% 19.5% 87.9%

Money Markets 12.1% 24.3% 87.9%

Table 1:Operatorµ Verification RSS

Class Sets Merge Super/Subclass Disjoint

Money Fx 15.4% 75.5% 84.6%

Corn 15.4% 37.9% 84.6%

Crude 12.8% 6.2% 87.2%

Earn 12.8% 42.3% 87.2%

Ship 22.0% 66.7% 78.0%

Crude 22.0% 23.0% 78.0%

Table 2:Operatorµ Verification Reuters

Money Foreign Exchange currency, is related to
prices ofCorn and prices ofSugar which are rep-
resented as concepts. However,Crude, raw mate-
rial, has no direct relation toMoney although both
concepts are related toShip, shipping of material
worldwide.

Table 1 compares the certainty level of three
operators, namelyMerge, Superclass-Subclasss,
andDisjoint, for two class pairs in the RSS data
set. When evaluating the classesMoney Latest
andMoney News International, there is a high
µSub-Suplevel and a lowµMergelevel. Although
there is also a highµDisjoint level, it is not as
high asµSub-Supand thus it is likely that these
two classes should be in a superclass-subclass re-
lationship. When examining two sibling classes
in the hierarchy,Money News Economy and
Money Markets, the µDisjoint level is signifi-
cantly higher than the other certainty levels, indi-
cating a possibleDisjoint relationship between the
two classes.

Table 2 details results received for the Reuters
data. It is worth noting that here, when com-
paringMoney FX andCorn, although there is
a high µSub-Supvalue, there is even a higher
µDisjoint level, which could indicate that these
two classes should not be in a hierarchical rela-
tionship if we observe the highestµ value for all
operations. However, an ontology administrator
will probably prefer to assign a differentµ value
for each operator. Thus, for aµDisjoint ≥ 0.9 and
µSub-Sup≥ 0.5 we receive the above relations.
Similarly for classesShip and Crude the same
higher disjoint value and the above relations can
be observed.

Figure 4 compares the results received by the
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Figure 4: Reuters HGSOT Comparison

ontology evolution method presented in this paper
to those of the HGSOT (Khan et al., 2003) method
implemented on a similar Reuters data set. We see
that our algorithm achieves better qualitative re-
sults. To find an appropriate concept for each node
in the hierarchy, HGSOT uses an automatic con-
cept selection algorithm from WordNet. HGSOT
uses the label Node for the nodes it cannot define
and the label Object for the nodes WordNet can-
not name specifically. As in our results, the con-
nections between theSugar, Earn, andCrude
nodes cannot be seen in the HGSOT results. How-
ever, the HGSOT algorithm does not supply any
verification value to the hierarchy selected. Fur-
thermore, the large number of hierarchies defined
asNode or Object do not contribute to the ontol-
ogy administrators’ understanding of the ontology
structure.

6 Conclusion

Continuous changes in organizations require fre-
quent updates of the infrastructure of their infor-
mation systems. Ontologies, which are used to
model organization infrastructure, therefore need
to be frequently updated and changed as well.

This work presents a model and a set of algo-
rithms to semi-automatically support ontology re-
lationship evolution using contexts. Given an on-
tology operator and operands, the model provides
the quantification of the extent to which the rela-
tionship is valid. The model is validated by empir-
ical analysis, using initial experiences with real-
world RSS and Reuters news traces. These experi-
ences show how relationships between the classes
can be created and modified. Preliminary empiri-
cal results show that our model can assist ontology
administrators in evolving ontologies.



To recap, the main contribution of this work is
both conceptual and algorithmic. We present an
ontology verification model, a quantified model
for automatically assessing the validity of relation-
ships in an ontology, and we provide a mapping
of several ontology operators for determining re-
lationships among classes.

The results of this work will be embedded
as part of a European Commission eGovernment
project. Future research will examine the model
performance on eGovernment data and other large
data sets. In addition, we plan on extending the
model to include additional operators.
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