
Semantic Methods for Service Categorization
An Empirical Study

Avigdor Gal, Aviv Segev, Eran Toch
Technion

Haifa
32000, Israel

ABSTRACT
In this work we provide an initial analysis of service catego-
rization, the process of associating services with ontologies.
Service categorization is an important pre-processing step to
tasks such as service composition. The absence of semantic
understanding of services may yield erroneous compositions
and therefore, service categorization can assist in determin-
ing the correctness of a composition. We analyze two com-
mon methods for text processing, TF/IDF and context anal-
ysis. We also test two types of service description, textual
and WSDL. Our initial results indicate that context analy-
sis is more useful than TF/IDF and that WSDL description
provides better categorization than textual description.

1. INTRODUCTION
In recent years, the use of services to compose new ap-

plications from existing modules has gained momentum. In
part, this is due to the availability of simple standards such
as WSDL for Web services. Also, the drive to utilize better
existing resources (such as code reuse in organizations [6])
has driven organizations to seek technologies to maintain
code repositories and code composition. Service composi-
tion in a distributed heterogeneous environment immedi-
ately raises issues of integration. Services are autonomous
units of code, independently developed and evolved and
therefore lack homogeneous structure beyond that of its in-
terface (e.g., as described in WSDL). Even there, while the
interface may be a common one in the sense that all services
have input, output, and some description of the service in-
ternals, heterogeneity of ways to define parameters and to
describe internal processing (typically done as free text in
WSDL) encumbers straightforward integration.

Works that relate to service integration have focused on
various aspects of the problem. Semantic Web services were
proposed to overcome interface heterogeneity. Using lan-
guages such as OWL-S [1], Web services are extended with
an unambiguous description by relating properties such as
input and output parameters to common concepts, and by

International Workshop on Semantic Data and Service Integration
(SDSI’07), September 23, 2007, Vienna, Austria

defining the execution characteristics of the service. The
concepts are defined in Web ontologies [2], which serve as
the key mechanism to globally define and reference concepts.
Service composition through planning (in the AI sense) was
introduced [10, 3] to manage the complexity of the problem.
In [19] and [18], it is argued that the process of service com-
position may be of an exploratory nature rather than one
of planning. Therefore, it is often the case that only partial
solutions to composer requirements exist, as Web services
are created autonomously without any a-priori knowledge
of their intended use. In an attempt to support exploratory
composition, an engineering approach was taken to provide
approximate service retrieval, in which the best effort com-
position is followed by “gluing” services together using some
additional programming work.

Input: SpotPrice
Input: StrikePrice
Input: InterestRate
Input: Volatility
Input: time
Output: OptionPrice

Black and Scholes
Option Calculator

Input: Mass
Input: Length
Input: Height
Input: DepartureZip
Input: DestinationZip
Output: BestPrice
Output: CourierID

Find Transporter

Ontology Concept

Price

Figure 1: Service Tagging is Misleading: Example

In this work we target an essential element that we believe
is still missing in existing approaches. In many cases, ser-
vices are only partially annotated semantically. Therefore,
the matching of services (e.g., for the purpose of composi-
tion) may yield results that are semantically incorrect, es-
pecially in exploratory scenarios, where the matching is not
tightly controlled. As an example, consider two real-world
Web services, illustrated in Figure 1. The two services, Black
and Scholes option calculator and find transporter share
some common concepts, such as the price concept. These
two services originate from very different domains. The first
is concerned with finance and the second with transporta-
tion. It is unlikely that these two services will be combined
into a meaningful composition. This example illustrates that
methods that are based solely on the concepts mapped to
the service’s parameters (such as in [12]) may yield inaccu-
rate results. Therefore, in this work we propose the use of
service categorization, a process that categorizes a service to
a set of concepts (or an ontology) that represents a domain,
to improve the matching process. Categorizing services to

Textual
Description

TF/IDF Ranking

Web Context
Retrieval

WSDL
Document

Token
Extraction

Ontology
Categorization

Token
Extraction

Baseline

Ontology
Matching
Results

Input Extraction Ranking &
Expanding

Categorization Output

Figure 2: The Web service categorization process

their respective domains can be used to classify the validity
of the composition and to rule out compositions of unrelated
services.

We provide a preliminary study, comparing the use of two
known methods, TF/IDF [16] and context generation [17],
in service categorization. We propose a three dimensional
classification of methods for associating a Web service with
an ontology concept and provide partial experiments to test
various combinations from the classification, using a real-
world data set. Our analysis indicates that context analysis
is more useful than TF/IDF and that WSDL description
provides better categorization than textual description.

The rest of the paper is organized as follows. Section 2
provides a simple model for service categorization and intro-
duces the three dimensional classification. We next present
the setup and results of the experimental evaluation of our
work. Section 4 describes related work. Finally, Section
5 concludes the research and provides directions for future
work.

2. SERVICE CATEGORIZATION

2.1 Overview
In this section, we specify the process of automatically

labeling Web services with semantic concepts for the sake
of categorization. We aim at associating an ontology con-
cept to each service. Such a process does not need to be as
fine-grained as semantic annotation. For example, a service
can be mapped to a whole ontology. Figure 2 depicts the
stages of the categorization process, including the different
methods we evaluated. We assume that each Web service is
described using a textual description (which is part of the
meta-data within UDDI registries), and a WSDL document
describing the syntactic properties of the service interface.
Figure 3 depicts an example of these two descriptions. These
descriptions serve as the input to the categorization process.

We examine three methods for the service description
analysis: TF/IDF, Web context extraction, and a baseline
for evaluation purposes. The baseline method is a simple
reflection of the original bag of tokens, extracted from the

service descriptions. The basic data structure used by all the
methods is a ranked bag of tokens, which is processed and
updated in the different stages. After the different analysis
methods were applied, the final categorization is achieved by
matching the bag of tokens to the concept names, attributes
and documentation of each of the ontologies.

 <s:element name="OptionPriceEuropeanCallDividends">
 <s:complexType>
 <s:sequence>
 <s:element ... name="SpotPrice" type="s:double" />
 <s:element ... name="StrikePrice" type="s:double" />
 <s:element ... name="InterestRate" type="s:double" />
 <s:element ... name="Volatility" type="s:double" />
 ...
 </s:sequence>
 </s:complexType>
</s:element>
...
<service name="BasicOptionPricing">
 <port name="BasicOptionPricingSoap" binding="s0:BasicOptionPricingSoap">
 <soap:address location="http://www.webservicex.net/pricing.asmx" />
 </port>
 ...
</service>

BasicOptionPricing
http://www.webservicex.net/pricing.asmx?WSDL
European call and put options,The Black Scholes analysis.
Adjusting for payouts of the underlying. American options.

WSDL Document

Textual Description

Figure 3: The Option Pricing Service: An Example

2.2 Service Analysis
The analysis starts with token extraction, representing

each service, S, using two sets of tokens, called descriptors.
Each token is a textual term, extracted by simple parsing

of the underlying documentation of the service. The first
descriptor represents the WSDL document, formally put
as DS

wsdl = {t1, t2, . . .}. The second descriptor, DS
desc =

{t1, t2, . . .}, represents the textual description of the service.
WSDL tokens require special handling, since meaningful to-
kens (such as parameter names and operation names) are
usually composed of a sequence of words, with the first let-
ter of each word capitalized (e.g., BasicOptionPricingSoap).
Therefore, the tokens are divided into separate tokens. The
tokens are filtered using a list of stop-words, removing words
with no substantive semantics. For instance, the tokens get,
response, and result are common in many WSDL documents.

An illustration of the baseline token list is depicted in
Figure 4. These tokens were extracted from the WSDL doc-
ument. All elements classified as name were extracted. The
sequence of words were expanded as previously mentioned
using the capital letter of each word.

In Section 2.6 we shall provide some intuition regarding
the differences between the methods of TF/IDF and conext
extraction, which serves as a motivation for choosing these
two. Nevertheless, this choice is more or less arbitrary.
Other methods for text extractions can be used, borrow-
ing from the vast literature of Information Retrieval (IR)
[14] and Machine Learning (ML) [11].

Option Price Call Black Scholes
Spot Price
Strike Price
Interest Rate
Volatility
time
Option Price Call Black Scholes Response
Option Price Call Black Scholes Result
Option Price Delta Call Black Scholes
Spot Price
Strike Price
Interest Rate
Volatility

Figure 4: An Example of the Baseline Representa-
tion of the Option Pricing Service

2.3 TF/IDF Analysis
TF/IDF (Term Frequency / Inverse Document Frequency)

is a common mechanism in IR to generate a robust set of
representative keywords from a corpus of documents. The
method can be applied here separately to the WSDL descrip-
tors and the textual descriptors since the linguistic charac-
teristics of the two document types are very different. By
building an independent corpus for each document type, ir-
relevant terms are more distinct and can be thrown away
with a higher confidence. In order to formally define TF/IDF,
we start by defining freq(ti, Di) as the number of occur-
rences of the token ti within the document descriptor Di.
We define the term frequency of each term as:

tf (ti) =
freq(ti, Di)

|Di|

We define Dwsdl to be the corpus of WSDL descriptors and
Ddesc to be the corpus of textual descriptions. The inverse
document frequency is calculated as the ratio between the

total number of documents and the number of documents
which contain the term:

idf (ti) = log
|D|

|{Di : ti ∈ Di}|
Here, D is defined generically, and its actual instantiation is
chosen according to the origin of the descriptor. Finally, the
TF/IDF weight of a token, annotated as w(ti) is calculated
as:

w(ti) = tf (ti)× idf 2(ti)

While the common implementation of TF/IDF gives equal
weights to the term frequency and inverse document fre-
quency (i.e., w = tf × idf), we have chosen to give higher
weight to the IDF value. The reason behind this modi-
fication is to normalize the inherent bias of the TF mea-
sure in short documents [15]. While traditional TF/IDF
applications were concerned with verbose documents (such
as books, articles and human-readable Web pages), WSDL
documents and the textual description of services are rela-
tively short. Therefore, the frequency of a word within a
document tends to be incidental, and the document length
component of the TF generally has no impact.

Option
Price
Call
Black
Scholes
Volatility
European
Strike
Spot
Dividend
Interest
Delta
Partials
Dividends
Payout

Figure 5: An Example of the TF/IDF High Scored
List of the Option Pricing Service

The token weight is used to induce ranking over the de-
scriptor’s tokens. We define the ranking using a precedence
relation �tf/idf , which is a partial order over D, such that
tl �tf/idf tk if w(tl) < w(tk). The ranking is used to fil-
ter the tokens according to a threshold which filters out
words with a frequency count higher than the second stan-
dard deviation from the average frequency. The effectiveness
of the threshold was validated by our experiments. Fig-
ure 5 presents the list of tokens which received a higher
weight than the threshold. Several tokens which appeared
in the baseline list (see Figure 4) were removed due to the
filtering process. For instance, words such as “Response,”
“Result,” and “time” received below-the-threshold TF/IDF
weight, due to their high frequency.

2.4 Context Extraction
The extraction process uses the World Wide Web as a

knowledge base to extract multiple contexts for the tokens.
Extraction is used to filter out biased tokens, to provide a
more precise ranking, and to extend the service descriptors.

The algorithm input is defined as a set of textual propo-
sitions representing the service description. The result of
the algorithm is a set of contexts - terms which are related
to the propositions. The context recognition algorithm was
adapted from [17] and consists of the following three steps:

1. Context retrieval: Submitting each token to a Web-
based search engine. The contexts are extracted and
clustered from the results.

2. Context ranking: Ranking the results according to
the number of references to the keyword, the number
of Web sites that refer to the keyword, and the ranking
of the Web sites.

3. Context selection: Finally, selecting the set of con-
texts for the textual proposition, defined as the outer
context, C, is assembled.

Calculator
Glossary
Black-Scholes
Financial
Formula
Finance
Trading
Option
Pricing
Model
Analysis
Scholes
Model

Figure 6: An Example of the Web Context

The algorithm can formally be defined as follows: Let D =
{P1, P2, ..., Pm} be a set of textual propositions representing
a document, where for all Pi there exists a collection of de-
scriptor sets forming the context Ci = {〈ci1, wi1〉, ..., 〈cin, win〉}
so that ist(Ci, Pi) is satisfied. In our case the adopted al-
gorithm uses the corpus of WSDL descriptors, Dwsdl, as
propositions Pi, and the contexts describing the WSDL as
tokens ci with their associated weight wi1. McCarthy [9]
defines a relation ist(C, P), asserting that a proposition P
is true in a context C. The context recognition algorithm
identifies the outer context C defined by:

ist(C,
m⋂

i=1

ist(Ci, Pi)).

The input to the algorithm is a stream, in text format, of
information. The context recognition algorithm output is a
set of contexts that attempts to describe the current scenario
most accurately. The algorithm attempts to reach results
similar to those achieved by a human when determining the
set of contexts that describe the current scenario (the Web
service in our case). For example, Figure 6 provides the
outcome of the Web context extraction.

One of the most interesting properties of the Web con-
text extraction analysis is its ability to add new, relevant,
words. For example, the algorithm had removed the word

“price,” which appeared in the baseline and the TF/IDF to-
ken lists, and introduced the word “pricing,” which is more
relevant to the financial domain (for which the service ac-
tually belongs). This is an example of the advantages the
Web context extraction approach has over the TF/IDF and
baseline approaches.

2.5 Ontology Matching
The final step of the labeling process is to match the fi-

nalized semantically extracted token set with the ontologi-
cal concepts. Let O1, O2, . . . , On be a set of ontologies, each
representing different domain knowledge. We provide a sim-
plified representation of an ontology as O ≡ 〈C, R〉, where
C = {c1, c2, . . . , cn} is a set of concepts with their associated
relation R.

In order to evaluate the matching of the concepts with the
service descriptor, we use a simple string-matching function,
denoted by matchstr, which returns 1 if two strings match
and 0 otherwise. We define S as the service, and recall that
DS is the service descriptor. Also, we define n to be the
size of DS . The overall match between the ontology and
the service is defined as a normalized sum of the concept
matching values:

match(S, Oi) =
1

n

∑
cj∈Oi

∑
ti∈DS

matchstr(ti, cj)

To conclude our example, with the baseline and the TF/IDF
analysis, the two services mentioned in Section 1, the option
pricing service and the transportation finding process, were
mapped to the same ontology. Using context analysis, they
were matched separately to the financial ontology and trans-
portation ontology, respectively. The method of ontology
matching is described next.

2.6 Discussion

Figure 7: Token sets generated by the analysis meth-
ods, and their inter-relations

The service categorization described in the service descrip-
tion provided by the service developer and service provider
are inefficient in specifying the categorization. This is due
to the perspective of the developer and the terms he uses.
Another problem is that the developer is not aware of all
the existing ontologies and all of their concepts when pro-

viding a service. Furthermore, the provider cannot be forced
to supply a detailed description. These textual descriptions
usually contain a bare minimum of information which some-
times does not add to the understanding of the service.

Figure 7 depicts the relationships between the sets of to-
kens produced by the different analysis methods, i.e., TF/IDF
and Web context extraction. The larger circle represents all
the tokens extracted from the textual description and the
WSDL document. We define their union as the baseline set.
As the TF/IDF provides a mere ranking of the original to-
kens, it is all contained in the baseline set. The TF/IDF
high scored set represents all the tokens which received a
higher score than a given threshold. The tokens which are
the result of the context extraction method are part of the
Web-based context set. The method identifies existing base-
line tokens, and also finds new words, based on a core of the
baseline tokens. Therefore, the set overlaps with the base-
line set, containing new tokens which were not part of the
baseline.

We now provide some insights regarding the various el-
ements of the diagram. The shaded part marked “A” is
the overlap of both methods. It contains all tokens which
belong to the Web context set and to the TF/IDF high
scored. Both TF/IDF and the context analysis methods
have decided that these certain keywords are relevant for
categorization. In our experiments, about 7% of the terms
in the context analysis belong to this part. This overlap may
serve as evidence of the importance of these keywords. For
example, categorizing a service that monitors a workflow
process had yielded a very short token list. However, the
token “workflow” appeared in the “A” set, as it is unique
enough to receive high TF/IDF weight, and relevant enough
for Web search to be retrieved as part of several extractions.

The shaded, moon-shaped part marked “B” involves those
keywords in the baseline that TF/IDF deems irrelevant,
while the context analysis method believes otherwise. This
part, according to our experiments, constitutes 3% of the
keywords returned by the context analysis. Tokens such
as “message,” “request,” and “response” are typical mem-
bers of this set, since they are frequent words in the WSDL
document, they are sometimes retrieved by the context ex-
traction algorithm. Thus, this set can be used to filter out
the context.

Part “C” marks the great advantage of the context anal-
ysis over the TF/IDF method. While the latter has to
work within the limits of the baseline dictionary, the con-
text analysis method goes out to the Web, using it as an ex-
ternal judge, returning keywords that are deemed relevant,
although they were not originally specified in the baseline
description. 90% of the returned keywords belong to this
region. Some are indeed evaluated as important while oth-
ers less so. For example, the descriptor of a service which
handles calculation of financial derivatives, was augmented
with words such as “trading” and “pricing” which are useful
for categorizing the service under the “finance” domain.

We intend to further investigate the inter-relationships be-
tween the two methods. For example, instead of analyzing
the text in parallel, we can start with TF/IDF, eliminating
low score tokens and then processing them with the context
analysis method. To get the best of both worlds, we need
to combine these methods in a way that they will overcome
each other’s errors. Therefore, we can combine the tools at
our disposal along three dimensions. One dimension deter-

mines the relevant description (WSDL vs. textual descrip-
tion, in our case). A second dimension chooses whether to
pre-filter or not (baseline vs. TF/IDF filtering). The third
dimension chooses the level of extracted Web context that
is used (no context, context that overlaps with the TF/IDF
set, and pure context). We leave the research into the inter-
relationships in and between these dimensions open for fu-
ture research.

We conclude this section with a worst case performance
analysis. The complexity analysis of the TF/IDF method
yields o(mn), where m is the number of WSDL documents
and n is the number of tokens. The complexity of the con-
text Web-based method is o(an) where n represents the
number of input cycles such as each line of text. The a
represents a constant limiting the number of top ranking re-
sults from each cycle of the algorithm. The context method
performance execution time is higher than the TF/IDF due
to the need to access the Web search engine for every line
of input extracted from the WSDL and can reach between
to 3-4 minutes for very long WSDL documents. However,
since each web service only needs to be classified once in its
life time, performance is less crucial than accuracy.

3. EMPIRICAL ANALYSIS
In this section we describe our experiments and provide

some empirical analysis and comparison of the different ser-
vice categorization methods.

3.1 Experimental Setup

3.1.1 Data
The data for the experiments were taken from an existing

benchmark repository, of several hundred Web services, pro-
vided by the researchers from University College Dublin.1

Our preliminary experiments use a set of 29 representative
Web services, divided into 4 different topics: courier ser-
vices, currency conversion, communication, and business.
For each Web service the repository provided a WSDL doc-
ument and a short textual description. The ontologies that
were used for the comparison were taken from another repos-
itory, named OWLS-TC [8], which includes over 40 different
ontologies from various domains.

The experiments compared four different methods for cat-
egorization, as described in Section 2:

Description Context The Context Extraction algorithm
described in Section 2.4 was applied to the textual de-
scription of the Web services. Each descriptor of the
Web service context was used as a token.

Name Context The Context Extraction algorithm was ap-
plied to the name labels of each Web service. Each
descriptor of the Web service context was used as a
token.

Name TF/IDF Each word in the document was checked
for term frequency and inverse document frequency
(TF/IDF). The set of highest ranking weighted value
words was used.

Our experiments compared the three methods, with an
addition of a baseline, which included the original token

1http://moguntia.ucd.ie/repository/ws2003.html

Figure 8: Precision and Recall of All Methods

list extracted from the service descriptors. The actual com-
parison was based on mapping the output of each of the
methods to the set of ontologies, using the string matching
method described in Section 2.5.

3.1.2 Performance Measure
The metrics in our experiments were recall and precision.

Recall that services can be categorized into several domains
and therefore we show, via example, how these measures
were computed. Assume that a given service is judged by a
human observer to belong to ontologies A, B, and C. Now,
assume that a method categorizes service X with ontologies
A, B, D, and E. We penalize this method for not choosing C
and for choosing D and E. Therefore, the precision should
be 2/4 since only 2 out of the 4 ontologies we provide are a
match. Recall should be 2/3, since we managed to identify
2 out of the 3 ontologies to which the service belongs.

3.2 Experimental Results
In our first experiment we analyze the usefulness of going

beyond the baseline bag of tokens. Recall that in Figure 7 we
described the overlap between the baseline and the context
tokens. As mentioned before, in our experiments there was
an overlap of 10% in the number of tokens. The remaining
90% of the context was an extension to the baseline bag of
tokens. 31% of those tokens were not matched in any of the
ontologies and therefore could not be used for categorization.
Of the matched tokens, 61% led to the successful match
with an ontology and 39% provided an incorrect matching.
These results are encouraging. It indicates that the use of an
external judge assists in better categorization. Nevertheless,
the method for generating such an external bag of tokens
needs to be improved.

Figure 8 compares the precision and recall of all four meth-
ods. The baseline method achieved 100% recall but only

11% precision. This result means that the baseline has suf-
ficient tokens to match with almost all of the ontologies for
each service. Clearly, this phenomenon shows poor selec-
tivity, as shown by the low precision level. The TF/IDF
improved the precision to 17% while keeping the recall at
100% due to elimination of some of the most general tokens
which belong to most ontologies. The Description Context
managed to double the precision to 22% at the cost of 11%
decrease in recall. The best result, dominating all others,
was achieved by the Name Context method, yielding 100%
recall and precision of 37%. We can therefore conclude that
the use of context generation has significant impact on the
success of text categorization. Again, more improvement is
needed to increase precision even more.

Our aim is to improve the precision while maintaining
the level of recall, and thus the integration of the Name
Context and the Description Context or the Name Context
and the Name TF/IDF should be considered. Since these
three methods work differently to extract tokens, the inte-
gration of the Name Context method with one of the two
other methods should boost the precision through the ex-
amination of the overlap between the two resultant sets of
ontologies.

A method for improving precision involves the pre-processing
of the ontologies themselves. Using the corpus of ontolo-
gies, one can apply TF/IDF and filter out common con-
cepts. For example, generic concepts, such as price would
be replaced with more precise concepts, such as option-
pricing and product-price. This way, categorization can be
improved, relying only on truly identifying tokens.

Figure 9 displays the precision vs. recall of the results,
partitioned into topics. The results are presented on a preci-
sion/recall graph, where precision is given on the x-axis and
recall on the y-axis. We can see that the performance of the
Baseline method for all topics is dominated by the Name

Figure 9: Precision vs. Recall Broken by Methods

TF/IDF and Name Context methods. The figure shows all
four baseline results, yet they overlap in pairs. The results of
the TF/IDF method are also clustered together, at a slightly
higher value. The results of the Description Context method
are more dispersed, with a lower recall than all other meth-
ods and a precision that overlaps both with the TF/IDF
method and with the lower precision values of the Name
Context method. The Name Context method dominates all
other methods, achieving the highest precision and recall
levels for all topics. For the Business domain, the method
achieved precision of 45% and recall of 100%.

The weakness of the TF/IDF approach is surprising, with
respect to its success in other IR fields. There are several
explanations for this phenomena. First, the relatively short
size of the WSDL document and the service’s textual de-
scription reduced the effectiveness of TF/IDF. Secondly, as
TF/IDF ranks tokens, the original order of the words within
the service descriptors was lost. This order was found to be
quite important for the ontology categorization process.

Figure 10 displays the precision and recall achieved ac-
cording to each topic. Note that the symbols in this figure
now represent domains and not methods. We clustered each
method with circles. The purpose of this figure was to ex-
amine whether it is easier for the methods to classify certain
topics. Figure 10 shows that in the topics of Business and
Communication both the highest and the lowest levels of
precision were achieved according to the different methods.
The Name Context method is the only method that yielded
the highest recall and precision in these two topics compared
to the other two topics. The same two topics scored low-
est in the Baseline method. courier services topic achieved
highest results in all methods except for the Name Context
method.

We believe that it is easier to classify the courier services
topic in all methods except for the Name Context method

because many of the tokens that appear in the labels can
be identified in the ontology, since this is a smaller domain.
In the topics of Business and Communication, which are
broader in scope, the name labels do not necessarily spec-
ify the topic and hence only the name context method was
successful in inferring the right tokens.

4. RELATED WORK
Patil et al. [13] present a combined approach towards au-

tomatic semantic annotation of services. The approach re-
lies on several matchers (string matcher, structural matcher,
and synonym finder), which are combined using a simple ag-
gregation function. A similar method, which also aggregate
results from several matchers, is presented by Duo et al.
[5]. Our research aims at a coarser-grain task and we there-
fore chose different methods for our preliminary evaluation.
However, we intend to evaluate the methods suggested in
these works in future research.

ASSAM [7] is a tool for semi-automatic annotation of Web
services. It uses learning techniques in order to narrow down
possible concepts, helping a human user to manually tag
the service. The objective of our approach is to provide
fully automatic labeling method (which is a coarser-grain
task) and to categorize the service rather than label service
parameters.

Woogle [4], by Dong et al., is a search engine for Web
services. It accepts keyword queries and returns results ac-
cording to information in WSDL documents, such as mes-
sage parameters. While some of the matching algorithms
used by Woogle are relevant to our work, Woogle matches
keywords while our work explores the matching of formal
concepts. However, we were able to provide further em-
pirical evidence for some of the conclusions of Dong et al.,
namely the effectiveness of clustering tokens according to

Baseline

Name TF/IDF

Desc. Context

Name Context

Figure 10: Precision vs. Recall According To Each Topic

their mutual distance in the WSDL file. Our results suggest
that one of the main reasons for the inferiority of TF/IDF
analysis was explained by losing the original order of the
words within the WSDL file.

5. CONCLUSION
The ability to compose Web services based on free text

and flexible composition can simplify the implementation
of organizational needs. Our approach extends the scope
of Web service utilization, by providing users with usable
methods to investigate and access large scale service reposi-
tories. Rather than asking users to manually annotate their
services with formal concepts, our method harnesses the in-
formation contained in the World Wide Web for establishing
rich context for user queries. Thus, we present a possible so-
lution for the inherently poor description of Web services.

Our experiments prove, to some extent, the inherent prob-
lems of analyzing WSDL documents. Their short length and
limited vocabulary cause serious challenges for labeling and
categorizing services. The weak performance of the TF/IDF
measure, which works successfully on more verbose texts,
proves that relying on the service text alone will not yield
sufficient results.

We have described so far a work-in-progress. We intend
to extend our experiments to a larger corpus of services.
Also, we have encountered some problems with the use of
general-purpose ontologies. Clearly, categorization will work
better with smaller, focused ontologies, and we intend to
seek many such ontologies for a more rigorous experimenta-
tion. We shall also look at methods for identifying coherent
sub-ontologies based on categorization results.

We seek to fully embed the proposed method as a pre-
processing step in OPOSSUM and test the outcome in im-
proving its retrieval capabilities. Other methods for service

categorization will be tested as well.

6. REFERENCES

[1] A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila,
D. L. Martin, S. A. McIlraith, S. Narayanan,
M. Paolucci, T. Payne, K. Sycara, and H. Zeng.
Daml-s: Semantic markup for web services. In
Proceedings of the International Semantic Web
Workshop (SWWS), pages 411–430, July 13 2001.

[2] S. Bechhofer, F. van Harmelen, J. Hendler,
I. Horrocks, D.L. McGuinness, P.F. Patel-Schneider,
and L.A. Stein. OWL web ontology language reference.
W3c candidate recommendation, W3C, 2004.

[3] J.G. Cardoso and A.G. Sheth. Semantic E-Workflow
Composition. Journal of Intelligent Information
Systems, 21(3):191–225, 2003.

[4] X. Dong, A.Y. Halevy, J. Madhavan, E. Nemes, and
J. Zhang. Simlarity search for web services. pages
372–383, 2004.

[5] Z. Duo, L. Juan-Zi, and X. Bin. Web service
annotation using ontology mapping. In SOSE ’05:
Proceedings of the IEEE International Workshop,
pages 243–250, Washington, DC, USA, 2005. IEEE
Computer Society.

[6] M. Gu, A. Aamodt, and X. Tong. Component
retrieval using conversational case-based reasoning. In
Proceedings of the International Conference on
Intelligent Information Systems (ICIIP 2004), pages
21–23, Beijing, China, October 2004.

[7] A. Heß, E. Johnston, and N. Kushmerick. ASSAM: A
tool for semi-automatically annotating semantic web
services. In International Semantic Web Conference,
pages 320–334, 2004.

[8] M. Klusch, B. Fries, M. Khalid, and K. Sycara.
Owls-mx: Hybrid semantic web service retrieval. In
Proceedings of 1st Intl. AAAI Fall Symposium on
Agents and the Semantic Web. AAAI Press, 2005.

[9] J. McCarthy. Notes on formalizing context. In
Proceedings of the Thirteenth International Joint
Conference on Artificial Intelligence, 1993.

[10] B. Medjahed, A. Bouguettaya, and A.K. Elmagarmid.
Composing web services on the semantic web. VLDB
J., 12(4):333–351, 2003.

[11] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[12] M. Paolucci, T. Kawamura, T.R. Payne, and K.P.
Sycara. Semantic matching of web services
capabilities. In International Semantic Web
Conference, pages 333–347, 2002.

[13] A.A. Patil, S.A. Oundhakar, A.P. Sheth, and
K. Verma. Meteor-s web service annotation
framework. In WWW ’04: Proceedings of the 13th
international conference on World Wide Web, pages
553–562, New York, NY, USA, 2004. ACM Press.

[14] C. J. Van Rijsbergen. Information Retrieval.
Butterworths, London, second edition, 1979.

[15] S. Robertson. Understanding inverse document
frequency: on theoretical arguments for IDF. Journal
of Documentation, 60(5):503–520, 2004.

[16] G. Salton and M. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill, 1983.

[17] A. Segev. Identifying the multiple contexts of a
situation. In Proceedings of IJCAI-Workshop Modeling
and Retrieval of Context (MRC2005), 2005.

[18] E. Toch, A. Gal, I. Reinhartz-Berger, and D. Dori. A
semantic approach to approximate service retrieval.
ACM Transactions on Internet Technology (TOIT),
8(1), 2008. forthcoming.

[19] E. Toch, I. Reinhartz-Berger, A. Gal, and D. Dori.
OPOSSUM: Bridging the gap between web services
and the semantic web. In Opher Etzion, Tsvi Kuflik,
and Amihai Motro, editors, NGITS, volume 4032 of
Lecture Notes in Computer Science, pages 357–358.
Springer, 2006.

