
Circular Context-Based Semantic Matching to Identify Web
Service Composition

Aviv Segev
National Chengchi University

NO.64, Sec.2, ZhiNan Rd., Wenshan District
Taipei City 11605, Taiwan
asegev@nccu.edu.tw

ABSTRACT
This paper provides initial analysis in identifying possible
Web services composition using context-based semantic match-
ing. Context-based semantic matching allows service com-
position to be expanded beyond simple term matching and
reduces erroneous compositions. A common method of con-
text extraction is used to compare two types of service de-
scription, textual and WSDL. The approach is unique since
it provides the Web service designer with an explicit numeric
estimation of the extent to which a composition “makes
sense.” Motivation for the work is displayed with examples
from Web services in the field of business.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Web-based ser-
vices; H.3.1 [Information Storage And Retrieval]: Con-
tent Analysis and Indexing; I.2.4 [Knowledge Represen-
tation Formalisms and Methods]: Semantic networks

General Terms
Algorithms, Design, Measurement

Keywords
Web services, Context, Semantics

1. INTRODUCTION
Businesses are beginning to view Web-services as a com-

plementary field to their core businesses model. Businesses
allow other organizations to integrate services which hook
on to their main business service or alternatively produce a
Web service as additional products which could be provided
as a separate product to be easily integrated by clients.

In recent years, the use of services to compose new ap-
plications from existing modules has gained momentum. In
part, this is due to the availability of simple standards such
as WSDL for Web services. Also, the drive to utilize better
existing resources (such as code reuse in organizations [6])
has motivated organizations to seek technologies to main-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSSSIA 2008, April 22, Beijing, China.
Copyright 2008 ACM ISBN 978-1-60558-107-1/08/04... $5.00.

tain code repositories and code composition. Service com-
position in a distributed heterogeneous environment imme-
diately raises issues of integration. Services are autonomous
units of code, independently developed and evolved, and
therefore lack homogeneous structure beyond that of its in-
terface (e.g., as described in WSDL). Even there, while the
interface may be a common one in the sense that all services
have input, output, and some description of the service in-
ternals, heterogeneity of ways to define parameters and to
describe internal processing (typically done as free text in
WSDL) encumbers straightforward integration.

Consequently, context-based semantic matching for Web
services composition has gained momentum. The research
on the ability to match Web services has focused on seman-
tic meaning rather than on the syntactic meaning. Works
that relate to service integration have focused on various as-
pects of the problem. Semantic Web services were proposed
to overcome interface heterogeneity. Using languages such
as OWL-S [1], Web services are extended with an unam-
biguous description by relating properties such as input and
output parameters to common concepts and by defining the
execution characteristics of the service. The concepts are
defined in Web ontologies [2], which serve as the key mech-
anism to globally define and reference concepts. Finally, an
analysis of different techniques for mapping Web services to
ontologies was performed based on text processing [5].

The ability to consider a composition of Web services
would require analyzing the relation of the context of each
service to other services. In this work it is proposed to ana-
lyze the context of each service in a circular two-way method.
Each Web service context will be evaluated according to its
proximity to other services and the proximity of each of the
other services to the current service. Figure 1 displays the
circular service description context analysis.

The analysis is based on the advantage that a Web ser-
vice can be separated into two descriptions: the WSDL and
a textual description of the Web service in free text. Each
Web textual description and WSDL will be extracted us-
ing a known context analysis method [12]. The overlap of
each service textual description context will be analyzed ver-
sus other Web services WSDL. This will form the circular
analysis for each service which will allow a two-way con-
text proximity comparison. The method proposed yields a
numeric estimation of the extent to which a composition
should be considered. The next section details the service
analysis method. Section 3 displays some empirical expe-
riences with matching Web services based on the method.
Section 4 discusses aspects of the algorithm performance.

WSDL Di

Service Description Di1

Service Description Di2

Service Description Din

WSDL Di1

WSDL Di2

WSDL Din

Service Description Di

.

.

.

.

.

.

Figure 1: Circular service description context analysis

Section 5 describes the related work. Finally, Section 6 dis-
plays the conclusion and future work.

2. SERVICE ANALYSIS
Analyzing the Web services composition, we assume that

each Web service is described using a textual description
(which is part of the meta-data within UDDI registries),
and a WSDL document describing the syntactic properties
of the service interface. Figure 2 depicts an example of these
two descriptions. These descriptions serve as the input to
the analysis process.

2.1 Initial Analysis
The analysis starts with token extraction, representing

each service, S, using two sets of tokens, called descriptors.
Each token is a textual term, extracted by simple parsing
of the underlying documentation of the service. The first
descriptor represents the WSDL document, formally put
as Dwsdl = {t1, t2, . . .}. The second descriptor, Ddesc =
{t1, t2, . . .}, represents the textual description of the service.
WSDL tokens require special handling, since meaningful to-
kens (such as parameter names and operation names) are
usually composed of a sequence of words, with the first let-
ter of each word capitalized (e.g., RetrieveIncidentsByPass-
portResult). Therefore, the tokens are divided into separate
tokens. The tokens are filtered using a list of stop-words, re-
moving words with no substantive semantics. For instance,
the tokens get, post, and result are common in many WSDL
documents.

An illustration of the baseline token list is depicted in
Figure 3. These tokens were extracted from the WSDL doc-
ument. All elements classified as name were extracted. The
sequence of words was expanded as previously mentioned
using the capital letter of each word.

The Support Network
Developer tools
TheSupportNetwork
http://contest.eraserver.net/SupportingServices/ws/ClientServices.asmx?wsdl
Provides methods for exposting customer support information to corporate

partners or compelementary industries/businesses

Textual Description

<?xml version="1.0" encoding="utf-8"?>
<definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:s="http://www.w3.org/2001/XMLSchema" xmlns:s0="http://parkert.com"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/" targetNamespace="http://parkert.com"
xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types>
 <s:schema elementFormDefault="qualified" targetNamespace="http://parkert.com">

 …

 <s:complexType name="Client">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="Name" type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="Passport" type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="Incidents" type="s0:ArrayOfAnyType" />
 </s:sequence>

 …
 <s:element minOccurs="1" maxOccurs="1" name="IncidentID" type="s:int" />
 <s:element minOccurs="0" maxOccurs="1" name="SubIncidents" type="s0:ArrayOfAnyType" />
 <s:element minOccurs="1" maxOccurs="1" name="Date" type="s:dateTime" />
 <s:element minOccurs="1" maxOccurs="1" name="ParentIncident" type="s:int" />
 <s:element minOccurs="0" maxOccurs="1" name="ProblemDescription" type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="SolutionOrAdvice" type="s:string" />
 <s:element minOccurs="1" maxOccurs="1" name="IsResolved" type="s:boolean" />
 <s:element minOccurs="0" maxOccurs="1" name="Subject" type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="Consultant" type="s:string" />
 </s:sequence>
 </s:complexType>

 ...

 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="RetrieveIncidentsByPassportResult"
type="s0:ArrayOfIncident" />
 </s:sequence>
 </s:complexType>

WSDL Document

Figure 2: An Example: Exposing Customer Support
Web Service

Retrieve Incidents

 Client

 Name

 Passport

 Incidents

 Array Of Any Type

any Type

 Incident

 Incident I D

 Sub Incidents

 Date

 Parent Incident

 Problem Description

 Solution Or Advice

 Is Resolved

 Subject

 Consultant

 Array Of Incident

 Incident

 Retrieve Incidents Response

 Retrieve Incidents Result

 Retrieve Incidents By Passport Result

Figure 3: Initial Processing Example of the Expos-
ing Customer Support Service

The next section presents some intuition regarding moti-
vation for choosing the method of context extraction. Never-
theless, this choice is more or less arbitrary. Other methods
for text extractions can be used, borrowing from the vast
literature of Information Retrieval (IR) [11] and Machine
Learning (ML) [9].

2.2 Context Extraction
The extraction process uses the World Wide Web as a

knowledge base to extract multiple contexts for the tokens.
Extraction is used to filter out biased tokens, to provide a
more precise ranking, and to extend the service descriptors.
The algorithm input is defined as a set of textual propo-
sitions representing the service description. The result of
the algorithm is a set of contexts - terms which are related
to the propositions. The context recognition algorithm was
adapted from [12] and consists of the following three steps:

1. Context retrieval: Submitting each token to a Web-
based search engine. The contexts are extracted from
the Internet and clustered according to the results.

2. Context ranking: Ranking the results according to
the number of references to the keyword, the number
of Web sites that refer to the keyword, and the ranking
of the Web sites.

3. Context selection: Finally, the set of contexts for
the textual proposition, defined as the outer context,
C, is assembled.

The algorithm can formally be defined as follows: Let D =
{P1, P2, ..., Pm} be a set of textual propositions representing
a document, where for all Pi there exists a collection of de-
scriptor sets forming the context Ci = {〈ci1, wi1〉, ..., 〈cin, win〉}
so that ist(Ci, Pi) is satisfied. McCarthy [8] defines a rela-
tion ist(C, P), asserting that a proposition P is true in a

Travel
Software
Management
Visa
Message
Response
Passport Services
Java
Security
Manage
Fire
Address
Application
XML
Address, IP
Program
Download

Figure 4: An Example of the Web Context

context C. In our case the adopted algorithm uses the cor-
pus of WSDL descriptors, Dwsdl, and textual description,
Ddesc, as propositions Pi, and the contexts describing the
WSDL as tokens ci with their associated weight wi1. The
context recognition algorithm identifies the outer context C
defined by:

ist(C,
m⋂

i=1

ist(Ci, Pi)).

The input to the algorithm is a stream, in text format, of
information. The context recognition algorithm output is a
set of contexts that attempts to describe the current scenario
most accurately. The algorithm attempts to reach results
similar to those achieved by a human when determining the
set of contexts that describe the current scenario (the Web
service in our case). For example, Figure 4 provides the
outcome of the Web context extraction.

An advantage of the Web context extraction approach
over simple token matching methods is the ability to add
new possible contexts, textual descriptors, of the Web ser-
vice which do not appear in the original text. This ability
derives from the use of the Internet as a knowledge base
for collecting the possible descriptors while other methods
limit the descriptors to keywords appearing in the WSDL.
For example, the Web context extraction described in Figure
4 includes the descriptors of “Management” and “Software”
which did not appear in the original WSDL description dis-
played in Figure 3.

2.3 Context Overlap and Composition
To analyze a set of Web services and identify which ser-

vices would be more likely to be composed, we analyze the
overlap between the services based on their context. We
compare each Web service WSDL descriptor context with
another Web service textual descriptor context, as described
in Figure 1.

Let WS = {D1, D2, ..., Dn} define a set of Web services
descriptions which are analyzed for composition. We denote
Context Overlap (CO) as:

CO(Dwsdl
i , Ddesc

j) = |{ckεDwsdl
i

⋂
ckεD

desc
j }|

which defines the number of overlapping context descrip-
tors, ck, of Web service Di WSDL descriptor with context
descriptors of Web service Dj textual descriptor, and simi-
larly for the reversed CO(Dwsdl

j , Ddesc
i). COMPij computes

the composition likelihood, the proximity, between two given
Web services:

COMP (Di, Dj) =


CO(Dwsdl
i , Ddesc

j)
2
+ CO(Dwsdl

j , Ddesc
i)

2

COMP (WS) computes the two services from a given set
with the highest likelihood of being composed to be:

COMP (WS) = Maxj (Maxi(COMP (Di, Dj)))

The technique can be used iteratively to identify the top
n services which could be considered for composition. Al-
ternatively, a threshold could be used for the COMP value
to define the number of compositions which should be con-
sidered.

3. EXPERIENCES WITH MATCHING WEB
SERVICES

The experiences are based on the data taken from an exist-
ing benchmark repository, of several hundred Web services,
provided by researchers from University College Dublin.1

The preliminary experiments use a set of 23 representative
Web services, originally defined under the topic of business.
For each Web service the repository provided a WSDL doc-
ument and a short textual description.
The experiments used two different methods for context

extraction, as described in Section 2:

Description Context The Context Extraction algorithm
described in Section 2.2 was applied to the textual de-
scription of the Web services. Each descriptor of the
Web service context was used as a token.

Name Context The Context Extraction algorithm was ap-
plied to the name labels of each Web service. Each
descriptor of the Web service context was used as a
token.

The Context Overlap of each set of two Web services was
calculated according to the algorithm described in Section
2.3. The algorithm was applied twice iteratively on the same
data and the two top ranking pairs of Web services consid-
ered for composition were identified.
Figure 5 displays the results of the context overlap for

all of the Web services. The horizonal axis displays all of
the Web services composition pairs. The vertical axis dis-
plays the context overlap value for each composition. Two
composition results are prominent with high values of 6 and
7.
The highest value for suggested composition was received

for composing a Web service that provides methods of ex-
posing customer support information to corporate partners
or complementary industries/businesses (displayed in Fig-
ure 2) with a Web service that provides a bar code for any
product number or ID. The composition suggested by the
algorithm enables the customer support information service

1http://moguntia.ucd.ie/repository/ws2003.html

Figure 5: Web Services Context Overlap

to be improved by using the bar code instead of multiple in-
formation classification ID’s such as “Incident ID” and “Re-
trieve Incidents By Passport Result” which appear in the
original WSDL description in Figure 2.

4. DISCUSSION
The initial results indicate that the context overlap can

be used to identify possibilities of Web services composi-
tion. The method not only analyzes whether the two ser-
vices should be considered for composition but also supplies
a numeric estimation of the extent to which a composition
can be made in comparison to the other services.
The effort required to analyze all possible combinations

for a large quantity of Web services is time consuming. The
numeric estimation of the extent of the composition allows a
Web service engineer to prioritize the analysis of each possi-
ble composition. The algorithm ability to evaluate the com-
position according to the context based semantic matching
approach that uses the Web as a knowledge source extends
the role of Web services in new directions. The algorithm
thus integrates two points of view, the “internal” view, the
given WSDL description, and the “external” view, the text
description of the different services from which we are look-
ing for possible compositions.
The complexity of the context Web-based method is o(an)

where n represents the number of input cycles such as each
line of text. The a represents a constant limiting the num-
ber of top ranking results from each cycle of the algorithm.
The execution time of the context based method is slow due
to the need to access the Web search engine for every line
of input extracted from the WSDL and can reach between
to 3-4 minutes for very long WSDL documents. However,
since each web service only needs to be classified once in its
life time, performance is less important than accuracy. The
complexity of the context overlap and composition method
is o(n2) where n represents each of the Web services exam-
ined for composition. However, since this step is based on
matching concepts the execution time is negligible compared
to the context extraction step.

5. RELATED WORK
Patil et al. [10] present a combined approach towards au-

tomatic semantic annotation of services. The approach re-
lies on several matchers (string matcher, structural matcher,
and synonym finder), which are combined using a simple ag-
gregation function. A similar method, which also aggregates
results from several matchers, is presented by Duo et al. [4].
The current research aims at a coarser-grain task and there-
fore different methods for the preliminary evaluation were
chosen. However, the methods suggested in these works will
be evaluated in future research.

ASSAM [7] is a tool for semi-automatic annotation of Web
services. It uses learning techniques in order to narrow down
possible concepts, helping a human user to manually tag
the service. The approach currently presented supplies a
numeric estimation in order to assess the possible composi-
tion.

Woogle [3], by Dong et al., is a search engine for Web ser-
vices. It accepts keyword queries and returns results accord-
ing to information in WSDL documents, such as message pa-
rameters. While some of the matching algorithms used by
Woogle are relevant to the current work, Woogle matches
keywords while the current work explores the matching of
formal concepts. However, further empirical evidence for
some of the conclusions of Dong et al., namely the effec-
tiveness of clustering keywords according to their mutual
distance in the WSDL file is provided.

6. CONCLUSIONS
The research displays initial results in context-based se-

mantic matching for possible Web services composition. The
method compares context extracted from each Web service
based on its WSDL description to all other Web services
textual description context. The initial experiences based
on the analysis of context overlap between different Web
services show promising results of identifying possible com-
position suggestions.

The research described so far is a work-in-progress. The
intention is to extend the experiments to a larger corpus of
services. Additional possible directions of research include
an analysis of other options of context overlap for possible
compositions, such as context overlap based only on textual
description overlap, and the matching of textual description
to WSDL, the reversed operation to the one in the current
research.

7. ACKNOWLEDGMENTS
The research work was partially supported by the Sayling

Wen Cultural & Educational Foundation through the Ser-
vice Science Research Center (SSRC) at National Chengchi
University in Taiwan.

8. REFERENCES
[1] A. Ankolekar, D. Martin, Z. Zeng, J. Hobbs,

K. Sycara, B. Burstein, M. Paolucci, O. Lassila,
S. Mcilraith, S. Narayanan, and P. Payne. DAML-S:
Semantic markup for web services. In Proceedings of
the International Semantic Web Workshop (SWWS),
July 2001.

[2] S. Bechhofer, F. van Harmelen, J. Hendler,
I. Horrocks, D. McGuinness, P. Patel-Schneider, and
L. Stein. OWL web ontology language reference. W3C
candidate recommendation, W3C, 2004.

[3] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and
J. Zhang. Simlarity search for web services. pages
372–383, 2004.

[4] Z. Duo, L. Juan-Zi, and X. Bin. Web service
annotation using ontology mapping. In SOSE ’05:
Proceedings of the IEEE International Workshop,
pages 243–250, Washington, DC, USA, 2005. IEEE
Computer Society.

[5] A. Gal, A. Segev, and E. Toch. Semantic methods for
service categorization - an empirical study. In
Proceedings International Workshop on Semantic Data
and Service Integration (SDSI 2007), 2007.

[6] M. Gu, A. Aamodt, and X. Tong. Component
retrieval using conversational case-based reasoning. In
Proceedings of the International Conference on
Intelligent Information Systems (ICIIP 2004), pages
21–23, Beijing, China, Oct. 2004.

[7] A. Heß, E. Johnston, and N. Kushmerick. ASSAM: A
tool for semi-automatically annotating semantic web
services. In International Semantic Web Conference,
pages 320–334, 2004.

[8] J. McCarthy. Notes on formalizing context. In
Proceedings of the Thirteenth International Joint
Conference on Artificial Intelligence, 1993.

[9] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[10] A. Patil, S. Oundhakar, A. Sheth, and K. Verma.
Meteor-s web service annotation framework. In WWW
’04: Proceedings of the 13th international conference
on World Wide Web, pages 553–562, New York, NY,
USA, 2004. ACM Press.

[11] C. J. V. Rijsbergen. Information Retrieval.
Butterworths, London, second edition, 1979.

[12] A. Segev, M. Leshno, and M. Zviran. Context
recognition using internet as a knowledge base.
Journal of Intelligent Information Systems,
29(3):305–327, 2007.

