
Techniques on developing
context-aware web services

Quan Z. Sheng and Jian Yu
School of Computer Science, The University of Adelaide, Adelaide, Australia

Aviv Segev
Department of Knowledge Service Engineering, KAIST,

Daejeon, South Korea, and

Kewen Liao
School of Computer Science, The University of Adelaide, Adelaide, Australia

Abstract

Purpose – In the last decade, web services have become a major technology to implement loosely
coupled business processes and perform application integration. Through the use of context, a new
generation of web services, namely context-aware web services (CASs), is currently emerging as an
important technology for building innovative context-aware applications. Unfortunately, CASs are
still difficult to build. Issues like lack of context provisioning management approach and lack of
generic approach for formalizing the development process need to be solved in the first place for easy
and effective development of CASs. The purpose of this paper is to investigate the techniques on
developing CASs.

Design/methodology/approach – The paper focuses on introducing a model-driven platform,
called ContextServ, and showcasing how to use this platform to rapidly develop a context-aware web
application, Smart Adelaide Guide. ContextServ adopts a model-driven development (MDD) approach
where a Unified Modeling Language (UML)-based modeling language – ContextUML – is used to
model web services and its context-awareness features.

Findings – The paper presents novel techniques for efficient and effective development of CASs
using a MDD approach. The ContextServ platform is the only one that provides a comprehensive
software toolset that supports graphical modeling and automatic model transformation of CASs.

Practical implications – The proposed approach has been validated in practice by developing
various CASs. The experimental study demonstrates the efficiency and effectiveness of the approach.

Originality/value – The paper presents a novel platform called ContextServ, which offers a set of
visual editing and automation tools for easy and fast generating and deploying CASs.

Keywords World wide web, Computer applications, Context-sensitive languages

Paper type Research paper

1. Introduction
Over the years, the web has gone through many transformations, from traditional
linking and sharing of computers and documents (i.e. “web of data”) to current
connecting of people (i.e. “web of people”). With the recent advances in radio-frequency
identification technology, sensor networks, and web services, the web is continuing

The current issue and full text archive of this journal is available at

www.emeraldinsight.com/1744-0084.htm

The work reported in this paper has been supported by ARC Discovery Grant DP0878367.
The authors would like to thank Sam Pohlenz and Hoi S. Wong for their participation in the
implementation of ContextServ.

Context-aware
web services

185

Received 16 December 2009
Revised 15 March 2010
Accepted 24 May 2010

International Journal of Web
Information Systems

Vol. 6 No. 3, 2010
pp. 185-202

q Emerald Group Publishing Limited
1744-0084

DOI 10.1108/17440081011070141

the transformation and will be slowly evolving into the so-called “web of things and
services” (Roussos et al., 2009; Sheng et al., 2010a, b; Welbourne et al., 2009). Indeed,
this future web will provide an environment where everyday physical objects such
as buildings, sidewalks, and commodities are readable, recognizable, addressable,
and even controllable using services via the web. The capability of integrating the
information from both the physical world and the virtual one not only affects the way
how we live, but also creates tremendous new web-based business opportunities such
as support of independent living of elderly persons, intelligent traffic management,
efficient supply chains, and improved environmental monitoring.

In the last decade, web services have become a major technology to implement loosely
coupled business processes and perform application integration. Through the use of
context, a new generation of smart web services is currently emerging as an important
technology for building innovative context-aware applications. We call such category of
web services as context-aware web services (CASs). CASs are emerging as an important
technology to underpin the development of new applications (user centric, highly
personalized) on the future ubiquitous web. A CAS is a web service that uses context
information to provide relevant information and/or services to users (Julien and Roman,
2006; Dey and Mankoff, 2005; Kapitsaki et al., 2009; Sheng and Benatallah, 2005; Sheng
et al., 2010a, b). A CAS can present relevant information or can be executed or adapted
automatically, based on available context information. For instance, a tour-guide service
gives tourists suggestions on the attractions to visit by considering their current
locations, preferences, and even the prevailing weather conditions (Liao et al., 2009).

Although the combination of context awareness (CA) and web services sounds
appealing, injecting context into web services raises a number of significant challenges,
which have not been widely recognized or addressed by the web services community
(Sheng et al., 2008, 2010a, b; Yu et al., 2008). One reason is that current web services
standards (e.g. Universal Description Discovery and Integration, Web Services Description
Language (WSDL), and Simple Object Access Protocol) are not sufficient for describing and
handling context information (Keidl and Kemper, 2004; Niu et al., 2008; Yu et al., 2008). CAS
developers must implement everything related to context management including the
collection, dissemination, and usage of context information in an ad hoc manner. Another
reason is that, to the best of our knowledge, there is a lack of generic approaches for
formalizing the development of CASs. As a consequence, developing CASs is a very
cumbersome and time-consuming activity, especially when these CASs are complex.

This paper presents how to rapidly build a prototype context-aware web application
called “Smart Adelaide Guide” (SAG) using the ContextServ platform (Sheng et al.,
2009). SAG recommends tourist attractions based on their current locations, preferred
languages, and weather conditions. ContextServ is a platform for rapid development of
CASs. ContextServ uses a Unified Modeling Language (UML)-based modeling
language – ContextUML (Sheng and Benatallah, 2005) – for formalizing the design
and development of CASs. ContextUML provides constructs for:

. generalizing context provisioning that includes context attributes specification
and retrieval; and

. formalizing CA mechanisms and their usage in CASs.

ContextServ supports the full lifecycle of developing CASs, including a visual
ContextUML editor, a ContextUML to Web Services Business Process Execution

IJWIS
6,3

186

Language (WS-BPEL) translator, and a WS-BPEL deployer working with the JBoss
Application Server.

The remainder of this paper is organized as follows. Section 2 gives a brief description
of the key functions of the SAG application. Section 3 introduces the ContextUML
language and Section 4 introduces the architecture and implementation of the
ContextServ platform. Section 5 presents the design of context community, an important
concept for optimized selection of context information for CASs. Finally, Section 6
discusses the related work and Section 7 provides some concluding remarks.

2. Smart Adelaide Guide
SAG is a context-aware web application, which offers an interface helping tourists to
find interesting places to visit in Adelaide, the capital city of South Australia. SAG
recommends attractions based on a user’s current location, current weather condition
in Adelaide[1], and a user’s preferred proximity limitation to the attractions (e.g. 2 km)
and language (e.g. French). Figure 1 shows a screenshot of the application.

To use SAG, simply click on any part of the map to indicate a user’s current location and
a blue balloon will appear on the clicked point with its latitude and longitude. The next step
is to choose a proximity from current location and a preferred language for attraction
description from the dropdown lists next to the map. After clicking on the Invoke button,
the context-aware attraction search web service will be accessed and a list of attractions
satisfying the user’s current context, including the location, the weather, and the proximity,
will appear both as red balloons on the map and as a list of links next to the map. These
links contain further information about the attractions. The names and descriptions of the
attractions are automatically translated to the selected preferred language. A clear
guideline on how to use this application is also given on the web site of the application.

What is happening at the back end is that SAG relies on a context-aware attractions
search web service. This web service dynamically adapts its service by considering

Figure 1.
The SAG

a context-aware
web applications

Context-aware
web services

187

several context information of a user. For example, if the weather is harsh
(i.e. temperature #10 8C or $30 8C or wind speed $20 km/h), only indoor attractions
(e.g. Adelaide Art Gallery) are recommended.

This CAS was developed by using the ContextServ platform (Sheng et al., 2009).
The ContextServ platform has been developed from a research project sponsored
by Australian Research Council (ARC) (www.cs.adelaide.edu.au/,contextserv). The
ContextServ platform offers an environment for rapid and flexible development of
CASs. In next sections, we will focus on the description of the relevant novel techniques
proposed in the ContextServ platform, as well as explaining how SAG was developed
from this platform.

3. ContextUML
In this section, we first introduce the ContextUML, an UML-based language for model-
driven development (MDD) of CASs (Sheng and Benatallah, 2005). ContextUML
metamodel is shown in Figure 2, which can be divided into two parts: context modeling
metamodel and CA modeling metamodel.

3.1 Context modeling
3.1.1 Context type. A Context is a class that models the context information. In our design,
the type Context is further distinguished into two categories that are formalized by the
subtypes AtomicContext and CompositeContext. Atomic contexts are low-level contexts
that do not rely on other contexts and can be provided directly by context sources.
In contrast, composite contexts are high-level contexts that may not have direct
counterparts on the context provision. A composite context aggregates multiple contexts,
either atomic or composite. The concept of composite context can be used to provide a rich
modeling vocabulary.

For instance, in the scenario of SAG, temperature and wind speed are atomic
contexts because they can be provided by a local weather forecast web service,
whereas harshWeather is a composite context that aggregates the former two contexts.

3.1.2 Context source. The type ContextSource models the resources from which
contexts are retrieved. We abstract two categories of context sources, formalized by the
context source subtypes ContextService and ContextServiceCommunity, respectively.
A context service is provided by an autonomous organization (i.e. context provider)
by collecting, refining, and disseminating context information. To solve the challenges

Figure 2.
ContextUML metamodel

Service

MechanismAssignment

Operation CAObject CAMechanism

ContextBinding ContextTriggering ContextService Context
Community

AtomicContext CompositeContext

Context ContextSource

ContextConstraint Action
Member

SourceAssignment

1..* 1..*

1..*
1..* 1..***

* *
*

*

*

*

*

Message

Input Output

Part

Part
0..*

0..1 0..1

1

1..*

IJWIS
6,3

188

of heterogeneous and dynamic context information, we abstract the concept of context
service community, which enables the dynamic provisioning of optimal contexts.
The concept is evolved from service community which was developed by Benatallah
et al. (2005) and details will be given in Section 3.1.3.

It should be noted that in ContextUML, we do not model the acquisition of context
information, such as how to collect raw context information from sensors. Instead,
context services that we abstract in ContextUML encapsulate sensor details and
provide context information by interpreting and transforming the sensed information
(i.e. raw context information). The concept of context service hides the complexity of
context acquisition from CAS designers so that they can focus on the functionalities
of CASs, rather than context sensing.

3.1.3 Context service community. A context service community aggregates multiple
context services, offering with a unified interface. It is intended as a means to support
the dynamic retrieval of context information. A community describes the capabilities
of a desired service (e.g. providing user’s location) without referring to any actual
context service (e.g. WhereAmI service). When the operation of a community is
invoked, the community is responsible for selecting the most appropriate context
service that will provide the requested context information. Context services can join
and leave the communities at any time.

By abstracting ContextServiceCommunity as one of the context sources, we can
enable the dynamic context provisioning. In other words, CAS designers do not have to
specify which context services are needed for context information retrieval at the
design stage. The decision of which specific context service should be selected for
the provisioning of a context is postponed until the invocation of CASs.

The selection can be based on a multi-criteria utility function (Stolze and Ströbel,
2001; Benatallah et al., 2005) and the criteria used in the function can be a set of quality of
context (QoC) parameters (Buchholz et al., 2003). The examples of QoC parameters are:

. precision indicating the accuracy of a context information;

. correctnessProbability representing the probability of the correctness of a
context information; and

. refreshRate indicating the rate that a context is updated.

The QoC is extremely important for CASs in the sense that context information is used
to automatically adapt services or content they provide. The imperfection of context
information may make CASs misguide their users. For example, if the weather
information is outdated, our attractions searching service might suggest users to surf
at the Bondi Beach although it is rainy and stormy. Via context service communities,
the optimal context information is always selected, which in turn, ensures the quality
of CASs. Since context community is an important concept for CASs, we have a
separate section that gives more details on our design (Section 5).

3.2 CA modeling
A CAMechanism is a class that formalizes the mechanisms for CA. We differentiate
between two categories of CA mechanisms by subtypes ContextBinding and
ContextTriggering, which will be detailed in Sections 3.2.1 and 3.2.2, respectively.
CA mechanisms are assigned to context-aware objects – modeled in the type

Context-aware
web services

189

CAObject – by the relation MechanismAssignment, indicating which objects have
what kinds of CA mechanisms.

CAObject is a base class of all model elements in ContextUML that represent
context-aware objects. There are four subtypes of CAObject: Service, Operation, Message,
and Part. Each service offers one or more operations and each operation belongs to exactly
one service. The relation is denoted by a composite aggregation (i.e. the association end
with a filled diamond). Each operation may have one input and/or one output messages.
Similarly, each message may have multiple parts (i.e. parameters). A CA mechanism can
be assigned to a service, an operation of a service, input/output messages of an operation,
or even a particular part (i.e. parameter) of a message. It is worth mentioning that the four
primitives are directly adopted from WSDL, which enables designers to build CASs on top
of the previous implementation of web services.

3.2.1 Context binding. A ContextBinding is a subtype of CAMechanism that models
the automatic binding of contexts to context-aware objects. By abstracting the concept
of context binding, it is possible to automatically retrieve information for users based
on available context information. For example, suppose that the operation of our
example CAS has an input parameter city. Everyone who wants to invoke the service
needs to supply a city name to search the attractions. Further, suppose that we have a
context userLocation that represents the city a user is currently in. A context binding
can be built between city (input parameter of the service) and userLocation (context).
The result is that whenever our CAS is invoked, it will automatically retrieve
attractions in the city where the requester is currently located.

An automatic contextual reconfiguration (i.e. context binding) is actually a mapping
between a context and a context-aware object (e.g. an input parameter of a service
operation). The semantics is that the value of the object is supplied by the value of
the context. Note that the value of a context-aware object could be derived from
multiple contexts. For the sake of the simplicity, we restrict our mapping cardinality as
one to one. In fact, thanks to the introduction of the concept of composite context, we
can always model an appropriate composite context for a context-aware object whose
value needs to be derived from multiple contexts.

3.2.2 Context triggering. The type ContextTriggering models the situation of
contextual adaptation where services can be automatically executed or modified based
on context information. A context triggering mechanism contains two parts: a set of
context constraints and a set of actions, with the semantics of that the actions must be
executed if and only if all the context constraints are evaluated to true.

A context constraint specifies that a certain context must meet certain condition in
order to perform a particular operation. Formally, a context constraint is modeled as a
predicate (i.e. a Boolean function) that consists of an operator and two or more
operands. The first operand always represents a context, while the other operands may
be either constant values or contexts. An operator can be either a prefix operator that
accepts two or more input parameters or a binary infix operator (e.g. ¼ , #) that
compares two values. Examples of context constraints can be:

(1) harshWeather ¼ true; and

(2) windSpeed #25.

Considering our SAG application, we can have a context triggering mechanism assigned
to its output message. The constraint part of the mechanism is harshWeather ¼ true,

IJWIS
6,3

190

and the action part is a transformation function filter(M,R), where M is the output
message and R is a transformation rule (e.g. selecting only indoor attractions).
Consequently, when weather condition is not good, the output message will be
automatically filtered (e.g. removing outdoor attractions) by the service.

4. The ContextServ platform
In this section, we will introduce the ContextServ, a comprehensive platform for
simplifying the development of CASs.

ContextServ adopts MDD (Frankel, 2003; Mellor et al., 2003) and the basic idea of MDD
is illustrated in Figure 3. Adopting a high level of abstraction, software systems can be
specified in platform independent models (PIMs), which are then (semi)automatically
transformed into platform specific models (PSMs) of target executable platforms using
some transformation tools. The same PIM can be transformed into different executable
platforms (i.e. multiple PSMs), thus considerably simplifying software development.

ContextServ relies on ContextUML (Section 3), an UML-based modeling language that
provides high-level visual constructs for specifying CASs. In particular, the language
abstracts two CA mechanisms, namely context binding and context triggering. The
former models automatic contextual configuration (e.g. automatic invocation of web
services by mapping a context onto a particular service input parameter), while the latter
models contextual adaptation where services can be dynamically modified based on
context information. Service models specified in ContextUML are then automatically
translated into executable implementations (e.g. WS-BPEL specifications) of specific
target service implementation platforms (e.g. IBM’s BPWS4J) (www.alphaworks.ibm.
com/tech/bpws4j).

The ContextServ architecture (Figure 4) features three main components, namely the
context manager, the ContextUML modeler, and the RubyMDA transformer, representing
the three major steps in developing CASs. All these components are implemented in Java.
In the following subsections, we present the details of these three components.

4.1 Context manager
The context manager provides facilities for service developers to specify context
provisioning. Current implementation supports the management of atomic context,
composite context, and context community.

4.1.1 Managing atomic contexts and composite contexts. As mentioned before,
atomic contexts are low-level contexts that can be obtained directly from context sources.

Figure 3.
Model-driven development

Platform
independent models

Model
transformation

Target
executable platforms

Implementation
of platform 1

Implementation
of platform 2

Implementation
of platform 3

Models

Transformer

Transformation
knowledge

Context-aware
web services

191

For the ContextServ platform to access context sources, context providers must be
registered in the platform. Currently, the platform supports two types of context providers:
local context providers and remote context providers. Local context providers are
responsible for collecting local context information, such as device memory capacity,
CPU usage, etc.

On the other hand, remote context providers gather context information from a
remote sensor or device. Every context provider has at least one agent – a piece of
program specifying the protocol on how to access the context information. For example,
we use a web service agent to access remote contexts that have a web service interface
and use a Java class to access local contexts. Figure 5 shows an example of panel for
defining an atomic context location. On the left side of the panel, we register a remote
context provider containing a web service agent to get the location context, and on the
right, side we define the collected context as a location atomic context with type String.

Composite contexts are modeled using statecharts in ContextServ, as shown in Figure 6.
Statecharts are a widely used formalism that is emerging as a standard for process
modeling following its integration into UML. The statechart of a composite context is then
exported into State Chart Extensible Markup Language (SCXML) (Barnett et al., 2010),
an XML-based language for describing generic statecharts, and executed in a SCXML
execution engine such as Commons SCXML (http://commons.apache.org/scxml).

4.1.2 Managing context community. A context community implements a common
interface (addContextSource(), removeContextSource(), selectContextSource()) for
context sources that provide the same context information. The main purpose of
a context community is to ensure robust and optimal provisioning of contexts to the
context consumer so that on one hand a candidate context source can take the place

Figure 4.
Architecture of the
ContextServ platform

Transform to WSDL

Context-aware web
service interface

Deploy service
Web server

Web service
registry (UDDI)

Execution
engine

(e.g. BPWS4J)
Service

developer

Community Composition

Context manager

Context

ContextUML model

ContextUML modeler

Specify context
provisioning

Specify context-
aware web
service in

contextUML

Configure and run service
at the engine

Service
consumer

Executable specification
of service (e.g. BPEL)

Ruby MDA transformer

Transform service
model to executable

specification

WSDL
specification

of service

Publish service to registry

Specify service
interface

Bind to service
implementation

Invoke
service

Search
service

IJWIS
6,3

192

of an unavailable context source, and on the other hand contexts having the best
quality can be provisioned.

Assume that in a context community, a specific piece of context information is
provisioned by n context providers {CPi}1# i # n. The quality of a context provider

Figure 5.
Panel for defining

atomic context

Figure 6.
Specifying composite

contexts

Context-aware
web services

193

(QoCPi) can be modeled by a set of m quality attributes {Aj}1# j # m such as precision,
trustworthiness, availability, response time, etc. Also, each quality attribute can be
assigned a weight Wj, so the quality of each context provider can be calculated. More
details on the implementation of context communities will be reported in Section 5.

4.2 ContextUML modeler
The ContextUML modeler provides a visual interface (Figure 7) for defining CASs
using ContextUML. In the implementation, we extended ArgoUML, an existing UML
editing tool (http://argouml.tigris.org), by developing a new diagram type,
ContextUML diagram, which implements all the abstract syntax of the ContextUML
language (Sheng and Benatallah, 2005).

4.3 RubyMDA transformer
Services represented in ContextUML diagrams are exported as XML Metadata
Interchange (XMI) files for subsequent processing by the RubyMDA transformer, which
is responsible for transforming ContextUML diagrams into executable web services,
using RubyGems 1.0.1 (http://rubyforge.org/projects/rubygems). The ContextServ
platform currently supports WS-BPEL, a de facto standard for specifying executable
processes. Once the BPEL specification is generated, the model transformer deploys
the BPEL process to an application server and exposes it as a web service. In the
implementation, JBoss Application Server is used since it is open source and includes a
BPEL execution engine jBPM-BPEL. RubyMDA is developed based on the model
transformation rules. The model transformation rules are mappings from ContextUML

Figure 7.
The ContextUML modeler

IJWIS
6,3

194

stereotypes to BPEL elements. Table I shows a summary of the model transformation
rules of RubyMDA.

Figure 8 shows the data flow of RubyMDA model transformer. RubyMDA takes the
XMI document as an input, which represents the ContextUML diagram. RubyMDA
reads the XMI document and constructs the UML model, which is a set of data
structure representing the components in UML class diagram. After the UML model is
constructed, RubyMDA transforms it into CAS model, which is a set of data structure
representing the CAS described in ContextUML diagram. Finally, RubyMDA
generates a BPEL process and WSDL document for a CAS. Moreover, it generates a set
of deployment files needed to deploy CAS to a server.

5. Context community: optimization and evaluation
As previously mentioned, context community is a very important concept for optimized
and dynamic context information provision, which is of paramount importance to the
QoC-aware web services. In ContextServ platform, we have paid a significant attention
to the development of context communities. In particular, we developed a module called
context community manager (CCM) for developing context communities in ContextServ.
In this section, we will describe some technical details of CCM and also presents some
performance evaluation. CCM aims at solving the following issues:

. A single context provider may fail to provide the requested context information
due to various reasons such as the server is unavailable or the sensor it uses for
sensing the raw context information is broken down.

From: UML stereotypes To: BPEL element

conuml.service ,process.
conuml.operation , invoke.
conuml.message ,variable.
conuml.atomicContext , invoke.
conuml.compositeContext , invoke.
conuml.contextBinding ,assign.
conuml.part Part attribute in , to.
conuml.contextTriggering ,switch. , invoke.

Table I.
RubyMDA’s model

transformation rules

Figure 8.
RubyMDA data flow

XML2UML UML2CAS

CAS: BPEL

CAS: JBoss

XMI

Service.bpel
Service.wsdl

build.xml
serviceImpl.java

bpel-definition.xml
bpel-application.xml

wscompile.xml
web.xml

webservices.xml

Input Transformer

Generator

Output

Context-aware
web services

195

. There may exist multiple context providers providing a same piece of context
information (usually with different levels of quality). It is hard for a CAS to ensure
that the context provider it interacts with provides the optimal context information.

CCM serves as a broker between a CAS and its context providers and will select the
context provider who provides optimal context for the CAS from all the context
providers. CCM has four main components:

(1) The context retrieval process is implemented as a manager for retrieving and
unifying contexts from heterogeneous sources.

(2) The context-monitoring process is responsible for actively monitoring the
quality information of the registered context providers by collecting and keeping
their quality information obtained through the context-retrieval process.

(3) The context evaluation process is responsible for evaluating the quality
information obtained from the context-monitoring process.

(4) The context-selection process is implemented for selecting the best context
provider that provides the optimal context information at runtime by using the
results obtained from the context-evaluation process.

5.1 Optimal context selection
Suppose that a specific piece of context c (e.g. temperature) can be supplied by a set of
context providers, i.e. {CPi}1# i # n. These context providers are members of a context
community (e.g. a weather context community Cw). The QoCP for each CPi is modeled
by a set of m quality attributes {Aj}1# j # m, e.g. precision, response time, availability,

and a distribution of weights {Wj}1# j # m over these attributes, where
Pm

j¼1Wj ¼ 1.

To calculate the score of each context provider, we use the following multi-attribute
utility function (Benatallah et al., 2005):

U ðCPiÞ ¼
Xm
j¼1

Wj £ Si;j

where Si, j represents the score of Aj of CPi.
The score matrix S is derived from scaling the initial attributes value matrix I. Since

there are positive attributes (e.g. availability) where a greater value indicates a better
quality, and also negative attributes (e.g. response time) where a less value indicates a better
quality, the score of each Aj is calculated differently for positive and negative attributes:

If Aj is negative:

Si;j ¼

Imax
j 2Ii;j

I diff
j

I diffj – 0

1 I diffj ¼ 0

8><
>:

If Aj is positive:

Si;j ¼

I i;j2Imin
j

I diff
j

I diffj – 0

1 I diffj ¼ 0

8>><
>>:

where: I max
j ¼ maxðI jÞ, I

min
j ¼ minðI jÞ, I

diff
j ¼ Imax

j 2 Imin
j .

IJWIS
6,3

196

In the following, we will use an example to explain how context communities work.
Suppose that we have the context providers and quality attributes as listed in Table II.
The initial value matrix I is:

I ¼

1 80 30

2 70 20

3 60 10

2 85 15

4 90 30

2
6666666664

3
7777777775

The vectors I max, I min, and I diff are as follows: I max ¼ [4, 90, 30], I min ¼ [1, 60, 10], and
I diff ¼ [3, 30, 20]. The score matrix S is then calculated as follows:

S ¼

ð421Þ
3

ð80260Þ
30

ð30230Þ
20

ð422Þ
3

ð70260Þ
30

ð30220Þ
20

ð423Þ
3

ð60260Þ
30

ð30210Þ
20

ð422Þ
3

ð85260Þ
30

ð30215Þ
20

ð424Þ
3

ð90260Þ
30

ð30230Þ
20

2
6666666664

3
7777777775

If we distributed the weights [0.2, 0.3, 0.5] over the quality attributes, we can get the
following utility vector:

U ¼

1 2=3 0

2=3 1=3 1=2

1=3 0 1

2=3 5=6 3=4

0 1 0

2
66666664

3
77777775

0:2

0:3

0:5

2
664

3
775 <

0:4

0:483

0:567

0:758

0:3

2
66666664

3
77777775

From the above vector, we can see that the context provider D is the best one because
its score 0.758 is the highest among all the providers. As a result, the weather context
community Cw should select D to supply the context information. More details on

Context provider Precision Correctness probability Refresh rate

A 1 80 30
B 2 70 20
C 3 60 10
D 2 85 15
E 4 90 30

Table II.
Values of quality

attributes

Context-aware
web services

197

modeling quality attributes and implementation of the context community component
can be found in Liao (2009).

5.2 Performance evaluation
We also conducted several experiments to evaluate the performance of the proposed
CCM. In particular, we conducted experiments to study:

. the performance of our optimal context selection algorithm presented in
Section 5.1; and

. the performance of the whole context selection process of CCM.

In the experiments, we constructed a weather context community with 1,000 context
providers, and the experiments were conducted on a desktop computer running
Windows XP with 3.25 GB of memory and a 2.66 GHz Intel(R) Core(TM)2 Quad CPU.

In the first experiment, we evaluated the performance of our proposed context
selection algorithm. In this experiment, the initial value matrix I is already established
in the context community (i.e. we only evaluate the context selection process, without
involvement of other three components such as the context retrieval process, the
context monitoring process, and the context evaluation process). We executed the
selection process with different number of context providers and counted the time used
in the selection. Figure 9 shows that, in general, the trajectory fits well with the
theoretical complexity of the algorithm (O(n log n)). The algorithm is quite efficient.
For example, it takes only about 5 ms to execute the algorithm with a context
community having 1,000 context providers.

In the second experiment, we used the same context community but tested the
performance of whole selection process, which also includes the communication time
between the context community and the context providers. As shown in Figure 10,
the trajectory is almost linear and the execution time is at the scale of seconds. For
example, the whole process used about two seconds for 150 context providers, and
about four seconds for 350 context providers, and ten seconds for 1,000 context
providers. We believe that the main reason that why the trajectory is linear is because
the communication time increases linearly with the increase of the number of context
providers, while the time used on executing the selection algorithm is not significant,
which is at the level of milliseconds.

Figure 9.
Performance of the
selection algorithm

0

1

2

3

4

5

6

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1,000

Number of context providers

A
lg

or
ith

m
 e

xe
cu

tio
n

tim
e

(m
s)

IJWIS
6,3

198

From above experiments, we can draw the conclusion that the performance of current
implementation of the CCM is acceptable for small to medium-size context communities
with hundreds of context providers.

6. Discussions and related work
With the maturing and wide adopting of web service technology, research on providing
engineering approaches to facilitate the development of context-aware services has
gained significant momentum. Using model-driven paradigm to develop CAS has
proven to be a valuable and important strand in this research area considering the
quality and efficiency it brings along. Apart from model-driven approaches, in the
survey on context-aware service engineering (Kapitsaki et al., 2009), the authors propose
other five categories of approach: middleware solutions and dedicated service platforms,
use of ontologies, rule-based reasoning, source code level programming/language
extensions, and message interception. In general, we agree with their viewpoint that any
of the approach has its pros and cons. For example, the source code level approach can
give more freedom to developers to do all kinds of context-aware adaptation, but this
approach does not separate apart the concerns on CA and suffers from a significant
maintenance cost. As to the model-driven approach, apart from its advantages,
it requires to keep the consistency between high-level models and low-level executable
code at all times, which brings extra complexity. We also agree that some approaches
can be used at the same time to bring extra benefits. For example, we are planning to
adopt ontologies in the context community to provide enhanced context organization
and matching functionality.

In the literature on MDD of context-aware services, the following research work
relates to ContextServ in particular. Ayed and Berbers (2006) propose a UML
metamodel that supports context-aware adaptation of service design from structural,
architectural, and behavioural perspectives. The structural adaptation can extend
the service object’s structure by adding or deleting its methods and attributes. The
architectural adaptation can add and delete service objects of an application according
to the context. The behavioural adaptation can adapt the behaviour of the service
object by extending its UML sequence diagram with optional context-related
sequences. Grassi and Sindico (2007) propose a UML profile considering both MDD
and aspect-oriented design paradigms so that the design of the application core can be
decoupled from the design of the adaptation logic. In particular, this profile categorize

Figure 10.
Performance of the full

selection process

0

2

4

6

8

10

12

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1,000

Number of context providers

E
xe

cu
tio

n
tim

e
(s

)

Context-aware
web services

199

context into state based which characterizes the current situation of an entity and event
based which represents changes in an entity’s state. Accordingly, state constraints,
which are defined by logical predicates on the value of the attributes of a state-based
context, and event constraints, which are defined as patterns of event, are used to
specify context-aware adaptation feature of the application.

Table III gives a detailed language capability comparison between ContextUML, the
modeling language used in the ContextServ platform, and the above two UML
metamodels from the perspectives of context modeling, service modeling, and CA
modeling. As we can see from Table III, all languages support the modeling of atomic
context, but only ContextUML supports composite context. As to service modeling, only
ContextUML directly supports the structure of web services, and the other two languages
just use plain UML classes to represent services. Finally, ContextUML does not support
behaviour adaptation since it is impossible to change the internal logic of an encapsulated
web service. However, Prezerakos et al. (2007) extend ContextUML and implement an
aspect-oriented transformation technique to transform UML models to AspectJ.

It is worth noting that our ContextServ platform is the only one that provides a
comprehensive software toolset that supports graphical modeling and automatic
model transformation for CAS development. ContextServ provides a comprehensive
platform where CASs are specified in a high-level modeling language and their
executable implementations are automatically generated and deployed, thus
contributing significantly to both design flexibility and cost savings.

7. Conclusions
In recent years, CASs are emerging as an important technology for building innovative
context-aware applications. Unfortunately, CASs are still difficult to build, due to lack
of context provisioning management approach and lack of generic approach for
formalizing the development process.

In this paper, we have presented techniques for efficient and effective development
of CASs. In particular, we introduced ContextUML, an UML-based modeling language,
and the ContextServ platform that implements ContextUML, for MDD of CASs. We
used an example to showcase how a context-aware web application can be built using
the platform. We also introduced the context community, an important concept for
dynamic and optimized context provisioning for CASs. Our ongoing work includes
developing more applications to validate the system and conducting more experiments
to study the system performance. We also plan to extend the context provisioning by
supporting semantics of contexts.

ContextUML AyedUML GrassiUML

Context modeling Atomic context þ þ þ
Composite context þ 2 2
Context quality þ þ 2
Context collection 2 þ 2

Service modeling Web service þ 2 2
CA modeling Context binding þ þ þ

Context triggering þ þ þ
Behaviour adaptation 2 þ 2

Table III.
Language capability
comparison

IJWIS
6,3

200

Note

1. It is retrieved from a really simple syndication feed, available at: http://rss.weather.com.
au/sa/adelaide

References

Ayed, D. and Berbers, Y. (2006), “UML profile for the design of a platform-independent context-
aware applications”, Proceedings of the First Workshop on Model Driven Development for
Middleware (MODDM’06), Melbourne, Australia, pp. 1-5.

Barnett, J., Akolkar, R., Auburn, R.J., Bodell, M., Burnett, D.C., Carter, J., McGlashan, S., Lager, T.,
Helbing, M., Hosn, R., Raman, T.V., Reifenrath, K. and Rosenthal, A.M. (2010), “State chart
XML: state machine notation for control abstraction”, available at: www.w3.org/TR/scxml/

Benatallah, B., Dumas, M. and Sheng, Q.Z. (2005), “Facilitating the rapid development and
scalable orchestration of composite web services”, Distributed and Parallel Databases,
An International Journal, Vol. 17 No. 1, pp. 5-37.

Buchholz, T., Küpper, A. and Schiffers, M. (2003), “Quality of context: what it is and why we
need it”, Proceedings of the 10th Workshop of the Open View University Association
(OVUA’03), Geneva, Switzerland, July.

Dey, A.K. and Mankoff, J. (2005), “Designing mediation for context-aware applications”,
ACM Transactions on Computer-Human Interaction, Vol. 12 No. 1, pp. 53-80.

Frankel, D.S. (2003), Model Driven Architecturee: Applying MDAe to Enterprise Computing,
Wiley, New York, NY.

Grassi, V. and Sindico, A. (2007), “Towards model driven design of service-based context-aware
applications”, Proceedings of the International Workshop on Engineering of Software
Services for Pervasive Environments: in Conjunction with the 6th ESEC/FSE Joint Meeting,
Dubrovnik, Croatia, pp. 69-74.

Julien, C. and Roman, G.-C. (2006), “EgoSpaces: facilitating rapid development of context-aware
mobile applications”, IEEE Transactions on Software Engineering, Vol. 32 No. 5,
pp. 281-98.

Kapitsaki, G., Kateros, D., Prezerakos, G. and Venieris, I. (2009), “Context-aware service
engineering: a survey”, Journal of Systems and Software, Vol. 82 No. 8, pp. 1285-97.

Keidl, M. and Kemper, A. (2004), “Towards context-aware adaptable web services”, Proceedings
of the 13th International World Wide Web Conference (WWW’04), New York, NY, May.

Liao, K. (2009), “Optimal context provisioning in web service environments”, Honours thesis,
School of Computer Science, The University of Adelaide, Adelaide.

Liao, K., Sheng, Q.Z., Yu, J. and Wong, H.S. (2009), “Smart Adelaide guide: a context-aware web
application”, Proceedings of the 11th International Conference on Information Integration
and Web-based Applications & Services (iiWAS 2009), Kuala Lumpur, December.

Mellor, S., Clark, A.N. and Futagami, T. (2003), “Special issue on model-driven development”,
IEEE Software, Vol. 20 No. 5, pp. 14-18.

Niu, W., Shi, Z., Wan, C., Chang, L. and Peng, H. (2008), “DDL-based model for web service
composition in context-aware environment”, Proceedings of the IEEE International
Conference on Web Services (ICWS’08), Beijing, September.

Prezerakos, G.N., Tselikas, N. and Cortese, G. (2007), “Model-driven composition of
context-aware web services using ContextUML and aspects”, Proceedings of the IEEE
International Conference on Web Services (ICWS’07), pp. 320-9.

Context-aware
web services

201

Roussos, G., Duri, S.S. and Thompson, C.W. (2009), “RFID meets the internet”, IEEE Internet
Computing, Vol. 13 No. 1, pp. 11-13.

Sheng, Q.Z. and Benatallah, B. (2005), “ContextUML: a UML-based modeling language for
model-driven context-aware web service development”, Proceedings of the 4th International
Conference on Mobile Business (ICMB’05), Sydney, July.

Sheng, Q.Z., Yu, J. and Dustdar, S. (2010a), Enabling Context-aware Web Services: Methods,
Architectures, and Technologies, CRC Press, Boca Raton, FL.

Sheng, Q.Z., Zeadally, S., Luo, Z., Jung, J.-Y. and Maamar, Z. (2010b), “Ubiquitous RFID: where
are we?”, Information Systems Frontiers, available at: www.springerlink.com/content/
b642w1021mwuu247/

Sheng, Q.Z., Nambiar, U., Sheth, A.P., Srivastava, B., Maamar, Z. and Elnaffar, S. (2008), “WS3:
international workshop on context-enabled source and service selection, integration and
adaptation”, Proceedings of the 17th International World Wide Web Conference
(WWW’08), Beijing, April.

Sheng, Q.Z., Pohlenz, S., Yu, J., Wong, H.S., Ngu, A.H. and Maamar, Z. (2009), “ContextServ:
a platform for rapid and flexible development of context-aware web services”, Proceedings
of the 31st International Conference on Software Engineering (ICSE’09), Vancouver, May.

Stolze, M. and Ströbel, M. (2001), “Utility-based decision tree optimization: a framework for
adaptive interviewing”, Proceedings of the 8th International Conference on User Modeling
(UM’01), Sonthofen, July.

Welbourne, E., Battle, L., Cole, G., Gould, K., Rector, K., Raymer, S., Balazinska, M. and
Borriello, G. (2009), “Building the internet of things using RFID: the RFID ecosystem
experience”, IEEE Internet Computing, Vol. 13 No. 3, pp. 48-55.

Yu, Q., Liu, X., Bouguettaya, A. and Medjahed, B. (2008), “Deploying and managing web
services: issues, solutions, and directions”, The VLDB Journal, Vol. 17 No. 3, pp. 537-72.

Corresponding author
Quan Z. Sheng can be contacted at: qsheng@cs.adelaide.edu.au

IJWIS
6,3

202

To purchase reprints of this article please e-mail: reprints@emeraldinsight.com
Or visit our web site for further details: www.emeraldinsight.com/reprints

