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Abstract—Ontologies have become the de-facto modeling tool of choice, employed in many applications and prominently in the

semantic web. Nevertheless, ontology construction remains a daunting task. Ontological bootstrapping, which aims at automatically

generating concepts and their relations in a given domain, is a promising technique for ontology construction. Bootstrapping an

ontology based on a set of predefined textual sources, such as web services, must address the problem of multiple, largely unrelated

concepts. In this paper, we propose an ontology bootstrapping process for web services. We exploit the advantage that web services

usually consist of both WSDL and free text descriptors. The WSDL descriptor is evaluated using two methods, namely Term

Frequency/Inverse Document Frequency (TF/IDF) and web context generation. Our proposed ontology bootstrapping process

integrates the results of both methods and applies a third method to validate the concepts using the service free text descriptor,

thereby offering a more accurate definition of ontologies. We extensively validated our bootstrapping method using a large repository

of real-world web services and verified the results against existing ontologies. The experimental results indicate high precision.

Furthermore, the recall versus precision comparison of the results when each method is separately implemented presents the

advantage of our integrated bootstrapping approach.

Index Terms—Web services discovery, metadata of services interfaces, service-oriented relationship modeling.

Ç

1 INTRODUCTION

ONTOLOGIES are used in an increasing range of applica-
tions, notably the Semantic web, and essentially have

become the preferred modeling tool. However, the design
and maintenance of ontologies is a formidable process [1],
[2]. Ontology bootstrapping, which has recently emerged as
an important technology for ontology construction, involves
automatic identification of concepts relevant to a domain
and relations between the concepts [3].

Previous work on ontology bootstrapping focused on
either a limited domain [4] or expanding an existing ontology
[5]. In the field of web services, registries such as the
Universal Description, Discovery and Integration (UDDI)
have been created to encourage interoperability and adop-
tion of web services. Unfortunately, UDDI registries have
some major flaws [6]. In particular, UDDI registries either are
publicly available and contain many obsolete entries or
require registration that limits access. In either case, a registry
only stores a limited description of the available services.
Ontologies created for classifying and utilizing web services
can serve as an alternative solution. However, the increasing
number of available web services makes it difficult to classify
web services using a single domain ontology or a set of
existing ontologies created for other purposes. Furthermore,
constant increase in the number of web services requires
continuous manual effort to evolve an ontology.

The web service ontology bootstrapping process pro-
posed in this paper is based on the advantage that a web

service can be separated into two types of descriptions: 1) the
Web Service Description Language (WSDL) describing
“how” the service should be used and 2) a textual description
of the web service in free text describing “what” the service
does. This advantage allows bootstrapping the ontology
based on WSDL and verifying the process based on the web
service free text descriptor.

The ontology bootstrapping process is based on analyzing
a web service using three different methods, where each
method represents a different perspective of viewing the web
service. As a result, the process provides a more accurate
definition of the ontology and yields better results. In
particular, the Term Frequency/Inverse Document Fre-
quency (TF/IDF) method analyzes the web service from an
internal point of view, i.e., what concept in the text best
describes the WSDL document content. The Web Context
Extraction method describes the WSDL document from an
external point of view, i.e., what most common concept
represents the answers to the web search queries based on the
WSDL content. Finally, the Free Text Description Verification
method is used to resolve inconsistencies with the current
ontology. An ontology evolution is performed when all three
analysis methods agree on the identification of a new concept
or a relation change between the ontology concepts. The
relation between two concepts is defined using the descrip-
tors related to both concepts. Our approach can assist in
ontology construction and reduce the maintenance effort
substantially. The approach facilitates automatic building of
an ontology that can assist in expanding, classifying, and
retrieving relevant services, without the prior training
required by previously developed approaches.

We conducted a number of experiments by analyzing 392
real-world web services from various domains. In particular,
the first set of experiments compared the precision of the
concepts generated by different methods. Each method
supplied a list of concepts that were analyzed to evaluate
how many of them are meaningful and could be related to the
services. The second set of experiments compared the recall
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of the concepts generated by the methods. The list of concepts
was used to analyze how many of the web services could be
classified by the concepts. The recall and precision of our
approach was compared with the performance of Term
Frequency/Inverse Document Frequency and web based
concept generation. The results indicate higher precision of
our approach compared to other methods. We also con-
ducted experiments comparing the concept relations gener-
ated from different methods. The analysis used the Swoogle
ontology search engine [7] to verify the results.

The main contributions of this work are as follows:

. On a conceptual level, we introduce an ontology
bootstrapping model, a model for automatically
creating the concepts and relations “from scratch.”

. On an algorithmic level, we provide an implementa-
tion of the model in the web service domain using
integration of two methods for implementing the
ontology construction and a Free Text Description
Verification method for validation using a different
source of information.

. On a practical level, we validated the feasibility and
benefits of our approach using a set of real-world
web services. Given that the task of designing and
maintaining ontologies is still difficult, our approach
presented in this paper can be valuable in practice.

The remainder of the paper is organized as follows:
Section 2 discusses the related work. Section 3 describes the
bootstrapping ontology model and illustrates each step of
the bootstrapping process using an example. Section 4
presents experimental results of our proposed approach.
Section 5 further discusses the model and the results.
Finally, Section 6 provides some concluding remarks.

2 RELATED WORK

2.1 Web Service Annotation

The field of automatic annotation of web services contains
several works relevant to our research. Patil et al. [8] present a
combined approach toward automatic semantic annotation
of web services. The approach relies on several matchers
(e.g., string matcher, structural matcher, and synonym
finder), which are combined using a simple aggregation
function. Chabeb et al. [9] describe a technique for perform-
ing semantic annotation on web services and integrating the
results into WSDL. Duo et al. [10] present a similar approach,
which also aggregates results from several matchers. Old-
ham et al. [11] use a simple machine learning (ML) technique,
namely Naı̈ve Bayesian Classifier, to improve the precision of
service annotation. Machine learning is also used in a tool
called Assam [12], which uses existing annotation of
semantic web services to improve new annotations. Categor-
izing and matching web service against existing ontology
was proposed by [13]. A context-based semantic approach to
the problem of matching and ranking web services for
possible service composition is suggested in [14]. Unfortu-
nately, all these approaches require clear and formal
semantic mapping to existing ontologies.

2.2 Ontology Creation and Evolution

Recent work has focused on ontology creation and evolu-
tion and in particular on schema matching. Many heuristics

were proposed for the automatic matching of schemata
(e.g., Cupid [15], GLUE [16], and OntoBuilder [17]), and
several theoretical models were proposed to represent
various aspects of the matching process such as representa-
tion of mappings between ontologies [18], ontology match-
ing using upper ontologies [19], and modeling and
evaluating automatic semantic reconciliation [20]. However,
all the methodologies described require comparison be-
tween existing ontologies.

The realm of information science has produced an
extensive body of literature and practice in ontology
construction, e.g., [21]. Other undertakings, such as the
DOGMA project [22], provide an engineering approach to
ontology management. Work has been done in ontology
learning, such as Text-To-Onto [23], Thematic Mapping
[24], and TexaMiner [25] to name a few. Finally, researchers
in the field of knowledge representation have studied
ontology interoperability, resulting in systems such as
Chimaera [26] and Protègè [27] . The works described are
limited to ontology management that involves manual
assistance to the ontology construction process.

Ontology evolution has been researched on domain
specific websites [28] and digital library collections [4]. A
bootstrapping approach to knowledge acquisition in the
fields of visual media [29] and multimedia [5] uses existing
ontologies for ontology evolution. Another perspective
focuses on reusing ontologies and language components
for ontology generation [30]. Noy and Klein [1] defined a set
of ontology-change operations and their effects on instance
data used during the ontology evolution process. Unlike
previous work, which was heavily based on existing
ontology or domain specific, our work automatically
evolves an ontology for web services from the beginning.

2.3 Ontology Evolution of Web Services

Surveys on ontology techniques implementations to the
semantic web [31] and service discovery approaches [32]
suggest ontology evolution as one of the future directions of
research. Ontology learning tools for semantic web service
descriptions have been developed based on Natural
Language Processing (NLP) [33]. Their work mentions the
importance of further research concentrating on context
directed ontology learning in order to overcome the
limitations of NLP. In addition, a survey on the state-of-
the-art web service repositories [34] suggests that analyzing
the web service textual description in addition to the WSDL
description can be more useful than analyzing each
descriptor separately. The survey mentions the limitation
of existing ontology evolution techniques that yield low
recall. Our solution overcomes the low recall by using web
context recognition.

3 THE BOOTSTRAPPING ONTOLOGY MODEL

The bootstrapping ontology model proposed in this paper is
based on the continuous analysis of WSDL documents and
employs an ontology model based on concepts and relation-
ships [35]. The innovation of the proposed bootstrapping
model centers on 1) the combination of the use of two
different extraction methods, TF/IDF and web based concept
generation, and 2) the verification of the results using a Free
Text Description Verification method by analyzing the
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external service descriptor. We utilize these three methods to
demonstrate the feasibility of our model. It should be noted
that other more complex methods, from the field of Machine
Learning (ML) and Information Retrieval (IR), can also be
used to implement the model. However, the use of the
methods in a straightforward manner emphasizes that many
methods can be “plugged in” and that the results are
attributed to the model’s process of combination and
verification. Our model integrates these three specific
methods since each method presents a unique advantage—
internal perspective of the web service by the TF/IDF,
external perspective of the web service by the Web Context
Extraction, and a comparison to a free text description, a
manual evaluation of the results, for verification purposes.

3.1 An Overview of the Bootstrapping Process

The overall bootstrapping ontology process is described in
Fig. 1. There are four main steps in the process. The token
extraction step extracts tokens representing relevant infor-
mation from a WSDL document. This step extracts all the
name labels, parses the tokens, and performs initial filtering.

The second step analyzes in parallel the extracted WSDL
tokens using two methods. In particular, TF/IDF analyzes
the most common terms appearing in each web service
document and appearing less frequently in other docu-
ments. Web Context Extraction uses the sets of tokens as a
query to a search engine, clusters the results according to
textual descriptors, and classifies which set of descriptors
identifies the context of the web service.

The concept evocation step identifies the descriptors which
appear in both the TF/IDF method and the web context
method. These descriptors identify possible concept names
that could be utilized by the ontology evolution. The context
descriptors also assist in the convergence process of the
relations between concepts.

Finally, the ontology evolution step expands the ontology
as required according to the newly identified concepts and
modifies the relations between them. The external web
service textual descriptor serves as a moderator if there is a
conflict between the current ontology and a new concept.
Such conflicts may derive from the need to more accurately
specify the concept or to define concept relations. New
concepts can be checked against the free text descriptors to
verify the correct interpretation of the concept. The relations
are defined as an ongoing process according to the most
common context descriptors between the concepts. After

the ontology evolution, the whole process continues to the

next WSDL with the evolved ontology concepts and

relations. It should be noted that the processing order of
WSDL documents is arbitrary.

In the continuation, we describe each step of our
approach in detail. The following three web services will

be used as an example to illustrate our approach:

. DomainSpy is a web service that allows domain
registrants to be identified by region or registrant
name. It maintains an XML-based domain database
with over 7 million domain registrants in the US.

. AcademicVerifier is a web service that deter-
mines whether an email address or domain name
belongs to an academic institution.

. ZipCodeResolver is a web service that resolves
partial US mailing addresses and returns proper ZIP
Code. The service uses an XML interface.

3.2 Token Extraction

The analysis starts with token extraction, representing each
service, S, using a set of tokens called descriptor. Each token

is a textual term, extracted by simply parsing the underlying

documentation of the service. The descriptor represents the

WSDL document, formally put as DSwsdl ¼ ft1; t2; . . . ; tng,
where ti is a token. WSDL tokens require special handling,

since meaningful tokens (such as names of parameters and

operations) are usually composed of a sequence of words
with each first letter of the words capitalized (e.g.,

GetDomainsByRegistrantNameResponse). Therefore,

the descriptors are divided into separate tokens. It is worth

mentioning that we initially considered using predefined

WSDL documentation tags for extraction and evaluation but

found them less valuable since web service developers

usually do not include tags in their services.
Fig. 2 depicts a WSDL document with the token list bolded.

The extracted token list serves as a baseline. These tokens are
extracted from the WSDL document of a web service

DomainSpy. The service is used as an initial step in our

example in building the ontology. Additional services will be

used later to illustrate the process of expanding the ontology.
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Fig. 1. Web service ontology bootstrapping process.

 
 
 
 
 

 
 
 
 
 
 
 

       <s:complexType name="Domain"> 

        <s:sequence> 

          <s:element minOccurs="0" maxOccurs="1" name="Country" type="s:string" /> 

          <s:element minOccurs="0" maxOccurs="1" name="Zip" type="s:string" /> 

          <s:element minOccurs="0" maxOccurs="1" name="City" type="s:string" /> 

          <s:element minOccurs="0" maxOccurs="1" name="State" type="s:string" /> 

          <s:element minOccurs="0" maxOccurs="1" name="Address" type="s:string" /> 

        </s:sequence> 
      </s:complexType> 

      <s:element name="GetDomainsByRegistrantName"> 

        <s:complexType> 

            <s:element minOccurs="0" maxOccurs="1" name="FirstMiddleName" type="s:string" /> 

            <s:element minOccurs="0" maxOccurs="1" name="LastName" type="s:string" /> 

      <s:element name="GetDomainsByRegistrantNameResponse"> 

        <s:complexType> 

            <s:element minOccurs="0" maxOccurs="1" name="GetDomainsByRegistrantNameResult" 

type="s0:Domains" /> 
        </s:complexType> 
      </s:element> 

      <s:element name="Domains" nillable="true" type="s0:Domains" /> 

    </s:schema> 

  <message name="GetDomainsByZipSoapIn"> 

Fig. 2. WSDL example of the service DomainSpy.



All elements classified as name are extracted, including
tokens that might be less relevant. The sequence of words is
expanded as previously mentioned using the capital letter
of each word. The tokens are filtered using a list of stop-
words, removing words with no substantive semantics.
Next, we describe the two methods used for the description
extraction of web services: TF/IDF and context extraction.

3.3 TF/IDF Analysis

TF/IDF is a common mechanism in IR for generating a
robust set of representative keywords from a corpus of
documents. The method is applied here to the WSDL
descriptors. By building an independent corpus for each
document, irrelevant terms are more distinct and can be
thrown away with a higher confidence. To formally define
TF/IDF, we start by defining freqðti;DiÞ as the number of
occurrences of the token ti within the document descriptor
Di. We define the term frequency of each token ti as

tfðtiÞ ¼
freqðti;DiÞ
Dij j

: ð1Þ

We define Dwsdl to be the corpus of WSDL descriptors.
The inverse document frequency is calculated as the ratio
between the total number of documents and the number of
documents that contain the term:

idfðtiÞ ¼ log
Dj j

Di : ti 2 Dif gj j : ð2Þ

Here,D is defined as a specific WSDL descriptor. The TF/
IDF weight of a token, annotated as wðtiÞ, is calculated as

wðtiÞ ¼ tfðtiÞ � idf2ðtiÞ: ð3Þ

While the common implementation of TF/IDF gives
equal weights to the term frequency and inverse document
frequency (i.e., w ¼ tf � idf), we chose to give higher
weight to the idf value. The reason behind this modification
is to normalize the inherent bias of the tf measure in short
documents [36]. Traditional TF/IDF applications are con-
cerned with verbose documents (e.g., books, articles, and
human-readable webpages). However, WSDL documents
have relatively short descriptions. Therefore, the frequency
of a word within a document tends to be incidental, and the
document length component of the TF generally has little or
no influence.

The token weight is used to induce ranking over the
descriptor’s tokens. We define the ranking using a pre-
cedence relation �tf=idf , which is a partial order over D,
such that tl �tf=idf tk if wðtlÞ < wðtkÞ. The ranking is used to
filter the tokens according to a threshold that filters out
words with a frequency count higher than the second

standard deviation from the average weight of token w
value. The effectiveness of the threshold was validated by
our experiments. Fig. 3 presents the list of tokens that
received a higher weight than the threshold for the
DomainSpy service. Several tokens that appeared in the
baseline list (see Fig. 2) were removed due to the filtering
process. For instance, words such as “Response,” “Result,”
and “Get” received below-the-threshold TF/IDF weight,
due to their high IDF value.

3.4 Web Context Extraction

We define a context descriptor ci from domain DOM as an
index term used to identify a record of information [37],
which in our case is a web service. It can consist of a word,
phrase, or alphanumerical term. A weight wi 2 < identifies
the importance of descriptor ci in relation to the web
service. For example, we can have a descriptor c1 ¼ Address
and w1 ¼ 42. A descriptor set fhci; wiigi is defined by a set of
pairs, descriptors and weights. Each descriptor can define a
different point of view of the concept. The descriptor set
eventually defines all the different perspectives and their
relevant weights, which identify the importance of each
perspective.

By collecting all the different view points delineated by the
different descriptors, we obtain the context. A context C ¼
ffhcij; wijigigj is a set of finite sets of descriptors, where i
represents each context descriptor and j represents the index
of each set. For example, a context C may be a set of words
(hence DOM is a set of all possible character combinations)
defining a web service and the weights can represent the
relevance of a descriptor to the web service. In classic
Information Retrieval, hcij; wijimay represent the fact that the
word cij is repeated wij times in the web service descriptor.

The context extraction algorithm is adapted from [38].
The input of the algorithm is defined as tokens extracted
from the web service WSDL descriptor (Section 3.2). The
sets of tokens are extracted from elements classified as
name, for example Get Domains By Zip, as described in Fig. 4.
Each set of tokens is then sent to a web search engine and a
set of descriptors is extracted by clustering the webpages
search results for each token set.
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Fig. 3. Example of the TF/IDF method results for DomainSpy.

Fig. 4. Example of the context extraction method for DomainSpy.



The webpages clustering algorithm is based on the
concise all pairs profiling (CAPP) clustering method [39]. This
method approximates profiling of large classifications. It
compares all classes pairwise and then minimizes the total
number of features required to guarantee that each pair of
classes is contrasted by at least one feature. Then each class
profile is assigned its own minimized list of features,
characterized by how these features differentiate the class
from the other features.

Fig. 4 shows an example that presents the results for
the extraction and clustering performed on tokens Get
Domains By Zip. The context descriptors extracted include:
fhZipCode ð50; 2Þi; hDownload ð35; 1Þi; hRegistration ð27; 7Þi;
hSale ð15; 1Þi; hSecurity ð10; 1Þi; hNetwork ð12; 1Þi; hPicture
ð9; 1Þi; hFree Domainsð4; 3Þig. A different point of view of
the concept can been seen in the previous set of tokens
Domains where the context descriptors extracted include
fhHosting ð46; 1Þi; hDomain ð27; 7Þi; hAddress ð9; 4Þi; hSale
ð5; 1Þi; hPremium ð5; 1Þi; hWhois ð5; 1Þig. It should be noted
that each descriptor is accompanied by two initial weights.
The first weight represents the number of references on
the web (i.e., the number of returned webpages) for that
descriptor in the specific query. The second weight
represents the number of references to the descriptor in
the WSDL (i.e., for how many name token sets was the
descriptor retrieved). For instance, in the above example,
Registration appeared in 27 webpages and seven different
name token sets in the WSDL referred to it.

The algorithm then calculates the sum of the number of
webpages that identify the same descriptor and the sum of
number of references to the descriptor in the WSDL. A high
ranking in only one of the weights does not necessarily
indicate the importance of the context descriptor. For
example, high ranking in only web references may mean
that the descriptor is important since the descriptor widely
appears on the web, but it might not be relevant to the topic
of the web service (e.g., Download descriptor for the
DomainSpy web service, see Fig. 4). To combine values of
both the webpage references and the appearances in the
WSDL, the two values are weighted to contribute equally to
final weight value.

For each descriptor, ci, we measure how many webpages
refer to it, defined by weight wi1, and how many times it is
referred to in the WSDL, defined by weight wi2. For
example, Hosting might not appear at all in the web service,
but the descriptor based on clustered webpages could refer
to it twice in the WSDL and a total of 235 webpages might
be referring to it. The descriptors that receive the highest
ranking form the context. The descriptor’s weight, wi, is
calculated according to the following steps:

. Set all n descriptors in descending weight order
according to the number of webpage references:

fhci; wi1i1�i1�n�1 j wi1 � wi1þ1g:

Current References Difference Value, DðRÞi¼
fwi1þ1 � wi1;1�i1�n�1 g.

. Set all n descriptors in descending weight order
according to the number of appearances in the
WSDL:

fhci; wi2i1�i2�n�1 j wi2 � wi2þ1g:

Current Appearances Difference Value, DðAÞi ¼
fwi2þ1 � wi2;1�i2�n�1 g.

. Let Mr be the Maximum Value of References and
Ma be the Maximum Value of Appearances:

Mr ¼ max
i
fDðRÞig;

Ma ¼ max
i
fDðAÞig:

. The combined weight, wi of the number of appear-
ances in the WSDL and the number of references in
the web is calculated according to the following
formula:

wi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � DðAÞi �Mr

3 �Ma

� �2

þ ðDðRÞiÞ
2

s
: ð4Þ

The context recognition algorithm consists of the follow-
ing major phases: 1) selecting contexts for each set of tokens,
2) ranking the contexts, and 3) declaring the current
contexts. The result of the token extraction is a list of
tokens obtained from the web service WSDL. The input to
the algorithm is based on the name descriptor tokens
extracted from the web service WSDL. The selection of the
context descriptors is based on searching the web for
relevant documents according to these tokens and on
clustering the results into possible context descriptors. The
output of the ranking stage is a set of highest ranking
context descriptors. The set of context descriptors that have
the top number of references, both in number of webpages
and in number of appearances in the WSDL, is declared to
be the context and the weight is defined by integrating the
value of references and appearances.

Fig. 4 provides the outcome of the Web Context
Extraction method for the DomainSpy service (see bottom
right part). The figure shows only the highest ranking
descriptors to be included in the context. For example,
Domain, Address, Registration, Hosting, Software, and Search
are the context descriptors selected to describe the
DomainSpy service.

3.5 Concept Evocation

Concept evocation identifies a possible concept definition
that will be refined next in the ontology evolution. The
concept evocation is performed based on context intersec-
tion. An ontology concept is defined by the descriptors that
appear in the intersection of both the web context results
and the TF/IDF results. We defined one descriptor set from
the TF/IDF results, tf=idfresult, based on extracted tokens
from the WSDL text. The context, C, is initially defined as a
descriptor set extracted from the web and representing the
same document. As a result, the ontology concept is
represented by a set of descriptors, ci, which belong to
both sets:

Concept ¼ c1; . . . ; cnjci 2 tf=idfresult \ ci 2 Cf g: ð5Þ

Fig. 5 displays an example of the concept evocation
process. Each web service is described by two overlapping
circles. The left circle displays the TF/IDF results and the
right circle the web context results. The possible concept
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identified by the intersection is represented in the overlap
between both methods. The unidentified relation between
the concepts is described by a triangle with a question
mark. The concept that is based on the intersection of both
descriptor sets can consist of more than one descriptor. For
example, the DomainSpy web service is identified by the
descriptors Domain and Address. For the Academic-

Verifier web service, which determines whether an
email address or web domain name belongs to an academic
institution, the concept is identified as Domain. Stemming is
performed during the concept evocation on both the set of
descriptors that represent each concept and the set of
descriptors that represent the relations between concepts.
The stemming process preserved descriptors Registrant and
Registration due to their syntactical word structure. How-
ever, analyzing the decision from the domain specific
perspective, the decision “makes sense,” since one describes
a person and the other describes an action.

A context can consist of multiple descriptor sets and
can be viewed as a metarepresentation of the web service.
The added value of having such a metarepresentation is
that each descriptor set can belong to several ontology
concepts simultaneously. For example, a descriptor set
fhRegistration; 23ig can be shared by multiple ontology
concepts (Fig. 5) that are related to the domain of web
registration. The different concepts can be related by
verifying whether a specific web domain exists, web
domain spying, etc., although the descriptor may have
different relevance to the concept and hence different
weights are assigned to it. Such overlap of contexts in
ontology concepts affects the task of web service ontology
bootstrapping. The appropriate interpretation of a web
service context that is part of several ontology concepts is
that the service is relevant to all such concepts. This leads

to the possibility of the same service belonging to multiple
concepts based on different perspectives of the service use.

The concept relations can be deduced based on conver-
gence of the context descriptors. The ontology concept is
described by a set of contexts, each of which includes
descriptors. Each new web service that has descriptors
similar to the descriptors of the concept adds new additional
descriptors to the existing sets. As a result, the most common
context descriptors that relate to more than one concept can
change after every iteration. The sets of descriptors of each
concept are defined by the union of the descriptors of both
the web context and the TF/IDF results. The context is
expanded to include the descriptors identified by the web
context, the TF/IDF, and the concept descriptors. The
expanded context, Contexte, is represented as the following:

Contexte ¼ c1; . . . ; cnjci 2 tf=idfresult [ ci 2 Cf g: ð6Þ

For example, in Fig. 5, the DomainSpy web service
context includes the descriptors: Registrant, Name, Location,
Domain, Address, Registration, Hosting, Software, and Search,
where two concepts are overlapping with the TF/IDF
results of Domain and Address, and in addition TF/IDF adds
the descriptors: Registrant, Name, and Location.

The relation between two concepts,Coni andConj, can be
defined as the context descriptors common to both concepts,
for which weight wk is greater than a cutoff value of a:

ReðConi; ConjÞ ¼ ckjck 2 Coni \ Conj; wk > a
� �

: ð7Þ

However, since multiple context descriptors can belong to
two concepts, the cutoff value of a for the relevant descriptors
needs to be predetermined. A possible cutoff can be defined
by TF/IDF, Web Context, or both. Alternatively, the cutoff
can be defined by a minimum number or percent of web
services belonging to both concepts based on shared context
descriptors. The relation between the two concepts Domain
and Domain Address in Fig. 5 can be based on Domain or
Registration. In the example displayed in Fig. 5, the value of
the cutoff weight was selected as a ¼ 0:9, and therefore all
descriptors identified by both the TF/IDF and the Web
Context methods with weight value over 0.9 were included in
the relation between both concepts. The TF/IDF and the Web
context each have different value ranges and can be
correlated. A cutoff value of 0.9, which was used in the
experiments, specifies that any concept that appears in
the results of both the Web context and the TF/IDF will be
considered as a new concept. The ontology evolution step,
which we will introduce next, identifies the conflicts between
the concepts and their relations.

3.6 Ontology Evolution

The ontology evolution consists of four steps including:

1. building new concepts,
2. determining the concept relations,
3. identifying relations types, and
4. resetting the process for the next WSDL document.

Building a new concept is based on refining the possible
identified concepts. The evocation of a concept in
the previous step does not guarantee that it should be
integrated with the current ontology. Instead, the new
possible concept should be analyzed in relation to the
current ontology.
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Fig. 5. Concept evocation example.



The descriptor is further validated using the textual
service descriptor. The analysis is based on the advantage
that a web service can be separated into two descriptions: the
WSDL description and a textual description of the web
service in free text. The WSDL descriptor is analyzed to
extract the context descriptors and possible concepts as
described previously. The second descriptor, DSdesc ¼
ft1; t2; . . . ; tng, represents the textual description of the
service supplied by the service developer in free text. These
descriptions are relatively short and include up to a few
sentences describing the web service. Fig. 6 presents an
example of free text description for the DomainSpy web
service. The verification process includes matching the
concept descriptors in simple string matching against all
the descriptors of the service textual descriptor. We use a
simple string-matching function,matchstr, which returns 1 if
two strings match and 0 otherwise.

Expanding the example in Fig. 7, we can see the concept
evocation step on the top and the ontology evolution on the
bottom, both based on the same set of services. Analysis of
the AcademicVerifier service yields only one descriptor
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Fig. 6. Textual description example of service DomainSpy.

Fig. 7. Example of web service ontology bootstrapping.



as a possible concept. The descriptor Domain was identified
by both the TF/IDF and the web context results and matched
with a textual descriptor. It is similar for the Domain and
Address appearing in the DomainSpy service. However, for
the ZipCodeResolver service both Address and XML are
possible concepts but only Address passes the verification
with the textual descriptor. As a result, the concept is split
into two separate concepts and the ZipCodeResolver

service descriptors are associated with both of them.
To evaluate the relation between concepts, we analyze

the overlapping context descriptors between different
concepts. In this case, we use descriptors that were included
in the union of the descriptors extracted by both the TF/IDF
and the Web context methods. Precedence is given to
descriptors that appear in both concept definitions over
descriptors that appear in the context descriptors. In our
example, the descriptors related to both Domain and Domain
Address are: Software, Registration, Domain, Name, and
Address. However, only the Domain descriptor belongs to
both concepts and receives the priority to serve as the
relation. The result is a relation that can be identified as a
subclass, where Domain Address is a subclass of Domain.

The process of analyzing the relation between concepts is
performed after the concepts are identified. The identifica-
tion of a concept prior to the relation allows in the case of
Domain Address and Address to again apply the subclass
relation based on the similar concept descriptor. However,
the relation of Address and XML concepts remains undefined
at the current iteration of the process since it would include
all the descriptors that relate to ZipCodeResolver service.
The relation described in the example is based on descriptors
that are the intersection of the concepts. Basing the relations
on a minimum number of web services belonging to both
concepts will result in a less rigid classification of relations.

The process is performed iteratively for each additional
service that is related to the ontology. The concepts and
relations are defined iteratively as more services are added.
The iterations stop once all the services are analyzed.

To summarize, we give the ontology bootstrapping
algorithm in Fig. 8. The first step includes extracting the
tokens from the WSDL for each web service (line 2). The next
step includes applying the TF/IDF and the Web Context to
extract the result of each algorithm (lines 3-4). The possible
concept, PossibleConi, is based on the intersection of tokens
of the results of both algorithms (line 5). If the PossibleConi
tokens appear in the document descriptor, Ddesc, then
PossibleConi is defined as concept, Coni. The model evolves
only when there is a match between all three methods. If

Coni ¼ ;, the web service will not classify a concept or a
relation. The union of all token results is saved as
PossibleReli for concept relation evaluation (lines 6-8). Each
pair of concepts, Coni and Conj, is analyzed for whether the
token descriptors are contained in one another. If yes, a
subclass relation is defined. Otherwise the concept relation
can be defined by the intersection of the possible relation
descriptors, PossibleReli and PossibleRelj, and is named
according to all the descriptors in the intersection (lines 9-13).

4 EXPERIMENTS

4.1 Experimental Data

The data for the experiments were taken from an existing
benchmark repository provided by researchers from Uni-
versity College Dublin. Our experiments used a set of 392
web services, originally divided into 20 different topics such
as: courier services, currency conversion, communication,
business, etc. For each web service, the repository provides
a WSDL document and a short textual description.

The concept relations experiments were based on compar-
ing the methods results to existing ontologies relations. The
analysis used the Swoogle ontology search engine1 results for
verification. Each pair of related terms proposed by the
methods is verified using Swoogle term search.

4.2 Concept Generation Methods

The experiments examined three methods for generating
ontology concepts, as described in Section 3:

. WSDL Context. The Context Extraction algorithm
described in Section 3.4 was applied to the name
labels of each web service. Each descriptor of the
web service context was used as a concept.

. WSDL TF/IDF. Each word in the WSDL document
was checked using the TF/IDF method as described
in Section 3.3. The set of words with the highest
frequency count was evaluated.

. Bootstrapping. The concept evocation is performed
based on context intersection. An ontology concept
can be identified by the descriptors that appear in
the intersection of both the web context results and
the TF/IDF results as described in Section 3.5 and
verified against the web service textual descriptor
(Section 3.6).

4.3 Concept Generation Results

The first set of experiments compared the precision of the
concepts generated by the different methods. The concepts
included a collection of all possible concepts extracted from
each web service. Each method supplied a list of concepts
that were analyzed to evaluate how many of them are
meaningful and could be related to at least one of the
services. The precision is defined as the number of relevant
(or useful) concepts divided by the total number of concepts
generated by the method. A set of an increasing number of
web services was analyzed for the precision.

Fig. 9 shows the precision results of the three methods
(i.e., Bootstrapping, WSDL TF/IDF, and the WSDL Con-
text). The X-axis represents the number of analyzed web
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Fig. 8. Ontology bootstrapping algorithm.

1. http://swoogle.umbc.edu.



services, ranging from 1 to 392, while the Y -axis represents
the precision of concept generation.

It is clear that the Bootstrapping method achieves the
highest precision, starting from 88.89 percent when 10
services are analyzed and converging (stabilizing) at
95 percent when the number of services is more than 250.
The Context method achieves an almost similar precision of
88.76 percent when 10 services are analyzed but only
88.70 percent when the number of services reaches 392. In
most cases, the precision results of the Context method are
lower by about 10 percent than those of the Bootstrapping
method. The TF/IDF method achieves the lowest precision
results, ranging from 82.72 percent for 10 services to
72.68 percent for 392 services, lagging behind the Boot-
strapping method by about 20 percent. The results suggest a
clear advantage of the Bootstrapping method.

The second set of experiments compared the recall of the
concepts generated by the methods. The list of concepts was
used to analyze how many of the web services could be
classified correctly to at least one concept. Recall is defined
as the number of classified web services according to the list
of concepts divided by the number of services. As in the
precision experiment, a set of an increasing number of web
services was analyzed for the recall.

Fig. 10 shows the recall results of the three methods,
which suggest an opposite result to the precision experi-
ment. The Bootstrapping method presented an initial lowest
recall result starting from 60 percent at 10 services and
dropping to 56.67 percent at 30 services, then slowly
converging to 100 percent at 392 services. The Context
and TF/IDF methods both reach 100 percent recall almost
throughout. The nearly perfect results of both methods are
explained by the large number of concepts extracted, many
of which are irrelevant. The TF/IDF method is based on
extracting concepts from the text for each service, which by
definition guarantees the perfect recall. It should be noted
that after analyzing 150 web services, the bootstrapping
recall results remain over 95 percent.

The last concept generation experiment compared the
recall and the precision for each method. An ideal result for
a recall versus precision graph would be a horizontal curve

with high precision value; a poor result has a horizontal
curve with a low precision value. The recall-precision curve
is widely considered by the IR community to be the most
informative graph showing the effectiveness of the methods.

Fig. 11 depicts the recall versus precision results. Both
the Context method and the TF/IDF method results are
displayed at the right end of the scale. This is due to
the nearly perfect recall achieved by the two methods. The
Context method achieves slightly better results than does
the TF/IDF method. Despite the nearly perfect recall
achieved by both methods, the Bootstrapping method
dominates the Context method and the TF/IDF method.
The comparison of the recall and precision suggests the
overall advantage of the Bootstrapping method.

4.4 Concept Relations Results

We also conducted a set of experiments to compare the
number of true relations identified by the different
methods. The list of concept relations generated from each
method was verified against the Swoogle ontology search
engine. If, for each pair of related concepts, the term option
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Fig. 9. Method comparison of precision per number of services.
Fig. 10. Method comparison of recall per number of services.

Fig. 11. Method comparison of recall versus precision.



of the search engine returns a result, then this relation is
counted as a true relation. We analyzed the number of true
relations results since counting all possible or relevant
relations would be dependent on a specific domain. The
same set of web services was used in the experiment.

Fig. 12 displays the number of true relations identified by
the three methods. It can be seen that the bootstrapping
method dominates the TF/IDF and the Context methods. For
10 web services, the number of concept relations identified
by the TF/IDF method is 35 and by the Context method 80,
while the Bootstrapping method identifies 148 relations. The
difference is even more significant for 392 web services
where the TF/IDF method identifies 2,053 relations, the
Context method identifies 2,273 relations, and the Boot-
strapping method identifies 5,542 relations.

We also compared the precision of the concept relations
generated by the different methods. The precision is defined
as the number of pairs of concept relations identified as true
against the Swoogle ontology search engine results divided
by the total number of pairs of concept relations generated
by the method. Fig. 13 presents the concept relations
precision results. The precision results for 10 web services
are 66.04 percent for the TF/IDF, 64.35 percent for the
bootstrapping, and 62.50 percent for the Context. For
392 web services the Context method achieves a precision
of 64.34 percent, the Bootstrapping method 63.72 percent,
and TF/IDF 58.77 percent. The average precision achieved
by the three methods is 63.52 percent for the Context
method, 63.25 percent for the bootstrapping method, and
59.89 percent for the TF/IDF.

From Fig. 12, we can see that the bootstrapping method
correctly identifies approximately twice as many concept
relations as the TF/IDF and Context methods. However, the
precision of concept relations displayed in Fig. 13 remains
similar for all three methods. This clearly emphasizes the
ability of the bootstrapping method to increase the recall
significantly while maintaining a similar precision.

5 DISCUSSION

We have presented a model for bootstrapping an ontology
representation for an existing set of web services. The

model is based on the interrelationships between an
ontology and different perspectives of viewing the web
service. The ontology bootstrapping process in our model is
performed automatically, enabling a constant update of the
ontology for every new web service.

The web service WSDL descriptor and the web service
textual descriptor have different purposes. The first de-
scriptor presents the web service from an internal point of
view, i.e., what concept best describes the content of the
WSDL document. The second descriptor presents the WSDL
document from an external point of view, i.e., if we use web
search queries based on the WSDL content, what most
common concept represents the answers to those queries.

Our model analyzes the concept results and concept
relations and performs stemming on the results. It should
be noted that other techniques of clustering could be used to
limit the ontology expansion, such as clustering by
synonyms or minor syntactic variations.

Analysis of the experiment results where the model did
not perform correctly presents some interesting insights. In
our experiments, there were 28 web services that did not
yield any possible concept classifications. Our analysis
shows that 75 percent of the web services without relevant
concepts were due to no match between the results of the
Context Extraction method, the TF/IDF method, and the
free text web service descriptor. The rest of the misclassi-
fied results derived from input formats that include
special, uncommon formatting of the WSDL descriptors
and from the analysis methods not yielding any relevant
results. Of the 28 web services without possible classifica-
tion, 42.86 percent resulted from mismatch between the
Context Extraction and the TF/IDF. The remaining web
services without possible classification derived from when
the results of the Context Extraction and the TF/IDF did
not match with the free text descriptor.

Some problems indicated by our analysis of the erro-
neous results point to the substring analysis. 17.86 percent of
the mistakes were due to limiting the substring concept
checks. These problems can be avoided if the substring
checks are performed on the results of Context Extractions
versus the TF/IDF and vice versa for each result and if, in
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Fig. 12. Method comparison of true relations identified per number of
services.

Fig. 13. Method comparison of relations precision per number of
services.



addition, substring matching of the free text web service
description is performed.

The matching can further be improved by checking for
synonyms between the results of the Context Extractions, the
TF/IDF, and free text descriptors. Using a thesaurus could
resolve up to 17.86 percent of the cases that did not yield a
result. However, using substring matching or a thesaurus in
this process to expand the results of each method could lead
to a drop in the integrated model precision results.

Another issue is the question of what makes some web
services more relevant than others in the ontology boot-
strapping process. If we analyze a relevant web service as a
service that can add more concepts to the ontology, then each
web service that belongs to a new domain has greater
probability of supplying new concepts. Thus, an ontology
evolution could converge faster if we were to analyze services
from different domains at the beginning of the process. In our
case, Figs. 9 and 10 indicate that the precision and recall of the
number of concepts identified converge after 156 randomly
selected web services were analyzed. However, the number
of concepts relations continues to grow linearly as more web
services are added, as displayed in Fig. 12.

The iterations of the ontology construction are limited by
the requirement to analyze the TF/IDF method on all the
collected services since the inverse document frequency
method requires all the web services WSDL descriptors to
be analyzed at once while the model iteratively adds each
web Service. This limitation could be overcome by either
recalculating the TF and IDF after each new web service or
alternatively collecting an additional set of services and
reevaluating the IDF values. We leave the study of the effect
on ontology construction of using the TF/IDF with only
partial data for future work.

The model can be implemented with human intervention,
in addition to the automatic process. To improve perfor-
mance, the algorithm could process the entire collection of
web services and then concepts or relations that are
identified as inconsistent or as not contributing to the web
service classification can be manually altered. An alternative
option is introducing human intervention after each cycle,
where each cycle includes processing a predefined set of
web services.

Finally, it is impractical to assume that the simplified
search techniques offered by the UDDI make it very useful
for web services discovery or composition [40]. Business
registries are currently used for the cataloging and
classification of web services and other additional compo-
nents. UDDI Business Registries (UBR) serve as the central
service directory for the publishing of technical informa-
tion about web services. Although the UDDI provides
ways for locating businesses and how to interface with
them electronically, it is limited to a single search criterion
[41]. Our method allows the main limitations of a single
search criterion to be overcome. In addition, our method
does not require registration or manual classification of
the web services.

6 CONCLUSION

The paper proposes an approach for bootstrapping an
ontology based on web service descriptions. The approach is
based on analyzing web services from multiple perspectives

and integrating the results. Our approach takes advantage
of the fact that web services usually consist of both WSDL
and free text descriptors. This allows bootstrapping the
ontology based on WSDL and verifying the process based
on the web service free text descriptor.

The main advantage of the proposed approach is its high
precision results and recall versus precision results of the
ontology concepts. The value of the concept relations is
obtained by analysis of the union and intersection of the
concept results. The approach enables the automatic
construction of an ontology that can assist, classify, and
retrieve relevant services, without the prior training
required by previously developed methods. As a result,
ontology construction and maintenance effort can be
substantially reduced. Since the task of designing and
maintaining ontologies remains difficult, our approach, as
presented in this paper, can be valuable in practice.

Our ongoing work includes further study of the
performance of the proposed ontology bootstrapping
approach. We also plan to apply the approach in other
domains in order to examine the automatic verification of
the results. These domains can include medical case studies
or law documents that have multiple descriptors from
different perspectives.
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