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ABSTRACT 
Citation networks contain temporal information about what 
researchers are interested in at a certain time. A community in 
such a network is built around either a renowned researcher or a 
common research field; either way, analyzing how the community 
will change in the future will give insight into the research trend 
in the future. The paper proposes methods to analyze how 
communities change over time in the citation network graph 
without additional external information and based on node and 
link prediction and community detection. Different combinations 
of the proposed methods are also analyzed. Experiments show 
that the proposed methods can identify the changes in citation 
communities multiple years in the future with performance 
differing according to the analyzed time span. Furthermore, the 
method  is shown to produce higher performance when analyzing 
communities to be disbanded and to be formed in the future.  

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications— Data 
mining; H.3.3 [Information Storage and Retrieval]: Information 
Search and Retrieval—Information filtering. 

General Terms 
Algorithms, Measurement, Design, Theory. 

Keywords 
Community; Prediction; Topic detection; Link prediction; 
Citation Network; Community Detection. 

1. INTRODUCTION 
Citation networks represent a picture of the current situation of 
research information in a specific field. The network therefore 
represents communities centered on a specific researcher or on a 
shared research field. Analyzing how the community will change 
in the future will give insight into the research trend in the future 
and how a field will evolve.  

Citation network analysis originated with the paper of Garfield et 

al. (1964) [7], which showed that the analysis indicated a high 
degree of coincidence between a historian's account of events and 
the citational relationship between these events. The present work, 
however, takes the opposite approach and looks to the future: it 
examines whether the prediction of citation networks can assist in 
the analysis of future events. 

The paper presents several methods to analyze how communities 
change over time in the citation network. The methods are based 
on a graph representation of the citation community at given time 
stamps with nodes representing papers and edges representing 
citations. External information such as author names, institutions, 
and existing keyword classifications is not used. The prediction 
methods are composed of different combinations of proposed 
building block algorithms for node prediction, edge prediction, 
and community detection. The node prediction analyzes the 
change in previous years in the number of citations and gives 
higher probability to highly cited papers. After the node 
prediction, six link prediction algorithms are compared to analyze 
the performance. The analysis showed that only the link 
prediction methods can be classified into two categories that 
contribute to the performance of the community detection. The 
Louvain method is used as the basic community detection method. 
The basic community analysis building blocks are organized in 
four different methods to provide an analysis of the order in 
which the methods can be used and of their individual 
contribution to the performance of the prediction. To analyze the 
models, two citation networks from the Stanford Large from High 
Energy Physics Theory (18479 papers, 136428 citations) and 
High Energy Physics (30566 papers, 347414 citations). 

The paper is organized as follows. The next section reviews the 
related work. Section 3 describes the methods used for analyzing 
future communities in citation networks. Section 4 presents the 
experiments and results on citation networks. Finally, Section 5 
discusses the results and model limitations. 

2. RELATED WORK 
2.1 Topic Detection and Prediction 
Topic Detection and Prediction has been studied in many research 
fields. Topic Detection and Tracking (TDT) [6] is a multi-site 
research project aiming to predict novel topics. Their goal is to 
find a new topic in news systems by effectively identifying the 
first article or report mentioning the new topic. There have been 
many studies using NLP topic detection approaches. The 
Adaptive Auto Regression (AR) model based on the Recursive 
Weighted Least Square (RWLS) method is presented to capture 
the Internet users’ psychosocial attention behavior on how ‘hot’ 
topics such as ‘Olympic Games’ grow on the Internet [25]. Topic-
conditioned First Story Detection (FSD) method in conjunction 
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with a supervised learning algorithm [26] and Document 
Clustering [27] are used to identify the earliest report to a certain 
event in news articles. Other methods are also used in topic 
predictions. Survey analysis has been used to predict the result of 
a presidential election [15]. 

2.2 Link Prediction 
Link prediction models the evolution of a network using its 
topological characteristics and primarily deals with the prediction 
of edges between existing nodes. There are a number of different 
approaches to link prediction [16]. The shortest path between two 
nodes in a graph is a simple measure of link prediction. Some 
methods, such as Common Neighbors [18], Jaccard’s coefficient 
[22], Preferential Attachment [18], and Adamic/Adar [1], use the 
node neighborhood information. The whole path within the 
network can also be used in link prediction, for example Katz [10], 
Simrank [9], Rooted PageRank [16], and so on. Common to those 
algorithms is that they do not deal with addition of nodes and 
deletion of edges. Their purpose is to generate a ranked list of 
predictive edges between existing nodes in a given network. The 
Community Prediction Method in the Citation Networks section 
outlines the differences between these methods and the 
contribution of each of these methods to the prediction. 

2.3 Community Detection 
Community detection searches structural information of a given 
graph to partition it into sub-graphs called communities or 
modules [12]. Agglomerative methods and divisive methods are 
commonly used in community detection. Newman’s community 
detection algorithm [19] is a widely used agglomerative method 
that uses modularity as the quality function. The recently 
developed Louvain method [3] is an agglomerative method and is 
commonly used because of its low computational complexity and 
high performance. When merging communities, this method 
considers not only the modularity but also the consolidation ratio. 
These algorithms, however, do not consider temporal information 
and disregard important factors such as consistency. Evolutionary 
clustering [4,5] takes the temporal changes in networks into 
consideration. There have also been studies about utilizing 
communities with link predictions. Family and friendship ties can 
be regarded as known community structures and are shown to 
help in predicting links in social networks [28]. The current work 
proposes a set of models based on the temporal graphs and the 
community prediction techniques. 

3. COMMUNITY PREDICTION METHOD 
IN CITATION NETWORKS 
Citation networks are directed social networks [20] between 
research papers, with nodes as papers and edges as citations 
between them. It is a form of network where link prediction can 
be applied without extra considerations about deleted edges or 
nodes; nodes and edges never disappear from citation networks. 
Community detection algorithms have been proven to detect 
communities in such existing networks [21] as well. The goal of 
this research is to predict changes in community structures of 
citation networks by utilizing link prediction and community 
detection algorithms. The proposed model is explained next.  

A graph G at certain time step t is represented by Gt = (Vt, Et) and 
is composed of a set of nodes Vt and a set of edges Et. Three time 
steps t-1 < t < t+n are chosen; Gt-1 and Gt are the test set and Gt+n 
is the ground truth n time steps later. The node prediction 
algorithm explained in 3.1.1 is first run on Gt-1 and Gt. The set of 

predicted nodes Vnp is connected to existing nodes Vt by 
corresponding edges Enp where Gnp = (Vnp, Enp), a component of 
predicted graph that combined with Gt represents the citation 
network after node prediction is made. It is fed to a set of link 
prediction algorithms explained in 3.1.2. A list of predicted edges 
is filtered so that only edges esource, target ∈ Elp with start point 
source ∈ Vnp and endpoint target ∈ Vt remain. This filtering is 
necessary to mimic the characteristics of citation networks where 
new edges can only form from a new node to existing ones. Only 
edges are added; hence a graph component added in link 
prediction Glp can be represented as Glp = (ϕ, Elp). Merging Glp 
with previous graph Gt and Gnp forms Gp, a graph predicted to be 
at time step t+1. This process is repeated n times (with Gp instead 
of Gt after the first run) to predict a graph t+n time steps in the 
future. Figure 1 illustrates how the graph grows with node and 
edge prediction.  

 

Figure 1. Illustration of predicted graph 

Community detection algorithms explained in 3.1.3 are then run, 
in turn returning a predicted community structure Cp. Each 
community ci in Cp is a subset of nodes Vp = ∑ci in a given graph 
Gp, with i ranging from 1 to the number of communities in Cp. 

3.1 Base Method 
3.1.1 Node Prediction 
In this paper, a new method is presented to predict the list of 
nodes in a citation network predicted to appear in a future 
timestamp. The cumulative nature of citation networks suggests 
that an edge e(i, j) ∈ Et in each citation network Gt = (Vt, Et) 
represents a citation from paper i to j created up to time step t. As 
a paper cannot cite another paper after its publication, all edges 
e(i, j) created in time step t must have a node created in the same 
time step as its start point i. The link prediction method does not 
deal with creation of nodes; hence additional consideration is 
necessary to deal with such nodes. 

A simple heuristic is used to predict the number of nodes to be 
added in the next time step; since the graph continues to grow and 
the number of new publications (nodes) per time step stays about 
the same. The number of nodes to create (ΔV for future reference) 
can be predicted as below; 

 ΔV = |Vt| – |Vt-1|, where |Vt| represents the number of nodes in Vt.  

Node-specific information is not required since it is impossible to 
predict the labels of new nodes. Added nodes Vnp are given new 
unique ids to identify themselves from existing nodes Vt. Then the 
set of edges Enp is created to connect Vnp to Vt. This step is 
necessary as nodes unconnected to the main graph contain no 
structural information and hence will not receive any attention 
during link prediction. At least one edge should be added for each 
predicted node to connect them to the given graph. Based on a 
well-known preferential attachment, the “rich-gets-richer” 
phenomenon in research society, initial citation counts have 
impact on future citations [2]; hence a highly cited paper has a 



greater chance to be cited again. Nodes with higher in-degree 
count are considered to have higher probability of having an in-
bound edge from a new node. The Kronecker Graph generation 
method [14] can capture more graphical features of a given graph, 
but the number of nodes is increased exponentially [23]; a citation 
network does not grow in such a way. Hence the method is not 
used in this paper. 

 

Figure 2. Example of the node prediction process  
(the incoming node has to change to 3) 

Figure 2 shows an example of node prediction based on a graph at 
t-1 (Figure 2.a) and t (Figure 2.b). Numbers written in the nodes 
show their in-bound edge count. In this example, one node 
(indicated by a red circle) is added in Figure 2.b; hence one node 
is predicted to appear in Gt+1 (Figure 2.c). 

For every node created, an outgoing edge is also created. When 
Γ(v) consists of the inbound neighbors of the node v, each node v 
in Vt has a select factor sp proportional to the number of inbound 
neighbors |Γ(v)| to become an endpoint for such edges; papers that 
have never cited before – nodes with no inbound edges – have sp 
= 0 and hence are never selected. In Figure 2.c, four candidates 
for Enp shown with brown dotted lines have varying width, and 
one is chosen for Gnp to connect the new node to the original 
network with probability proportional to the in-degree count of 
endpoint nodes (Figure 2.d). In one of the alternative methods 

explained in 3.2.1, this module is modified so multiple edges are 
added instead of one. The performance changes are analyzed in 
the experiments. 

The result is a set Gnp= (Vnp, Enp) with nodes Vnp each connected 
to one of the original nodes by edge set Enp. Gnp with Gt forms a 
predicted graph after node prediction is completed. Link 
prediction is then run on the network Gt and Gnp combined in 
order to predict new outgoing edges from such new nodes.  

3.1.2 Link Prediction 
After the node prediction is completed, six link prediction 
algorithms are run on the resulting network. The Preferential 
Attachment [18] method follows preferential attachment theory 
where the rich get richer. Common Neighbor [18] simply 
measures the number of common neighbors between two nodes to 
calculate the similarity score. Jaccard’s Coefficient [22] uses a 
more complex method where the relative fractions of the number 
of common neighbors are considered. A similar approach is 
presented by Adamic/Adar [1], but they weight rarer features 
more heavily. Simrank [9] and Rooted PageRank [16], on the 
other hand, do not use neighborhood information and use the 
random walk with restart (RWR) approach. Katz [10] also ignores 
neighborhoods but utilizes path distance instead of RWR. Figure 
3 shows the detailed algorithms. 

3.1.3 Community Detection 
Two implementations of the Louvain method are used in this 
paper: Louvain-smallest algorithm and Louvain-best algorithm. 
The Louvain-smallest algorithm returns a smallest partition of the 
graph and the Louvain-best algorithm returns a more coarse-
grained partition where the graph is partitioned into fewer (and 
larger) communities. 

A list of communities C is produced from graph G with 
community detection algorithms. Each community ci ∈ C consists 
of a subset of nodes V in a given graph G. In this model, 
community detection is run twice, with the predicted network and 
with the true result. The lists of communities are then compared 
to evaluate the result; Gp is fed to community detection 
algorithms to produce Cp while Gt+n is used to create Ct+n. 

 

Figure 3. Link prediction algorithm [16] 



 

Figure 4. Outline of methods 

3.2 Alternative Methods 
Three alternative methods of the given model, referred as the nlc-
method, are also proposed in this paper. Figure 4 outlines how the 
modules explained above are used. ‘N’ode prediction (3.1.1), 
‘L’ink prediction (3.1.2), and ‘C’ommunity Detection (3.1.3) are 
visualized as a block, and each method consists of a series of 
modules run in left-to-right sequential order. For example, the 
base method in Figure 4 requires the node prediction module to 
run first, the link prediction module second, and then the 
community detection module.   

3.2.1 Heuristic Prediction 
The nlc-method adds an edge per node predicted by the node 
prediction module. The purpose of these edges is to act as 
catalysts in the link prediction module, allowing newly added 
nodes to have a chance of getting a non-zero similarity score with 
other nodes. This enables the link prediction module to predict 
more edges connected to the new nodes. 

In the heuristic prediction method (the nc-method), it is assumed 
that the preferential-attachment approach used in the node 
prediction module is able to predict edges to some extent. To test 
this hypothesis, the link prediction module is omitted and the 
node prediction module is modified in this method; more edges 
are added in the node prediction module to compensate for the 
loss of predicted edges. The number of edges to add per predicted 
node in time step t is calculated as m = ΔE / ΔV where ΔE = |Et| – 
|Et-1|. After the node prediction module is run, adding m edges 
instead of one, Gnp is set to be Gp, a predicted graph at time step 
t+1. The same method is repeated on Gp n times to get a predicted 
graph at time step t+1. The number of edges added per node is 
data dependent. If a fixed number is used, the method risks either 
not predicting enough edges in a complex graph or predicting too 
many edges in a simple graph, resulting in poor prediction 
performance.  

3.2.2 Per-Community Prediction 
A better result is obtained when link predictions are done on top 
of known communities in a network[28]. The Per-Community 
Prediction method (the cnlc-method) is proposed to evaluate 
whether communities found by community detection methods can 
also be used to improve the accuracy of edges added in the link 
prediction module.  

The cnlc-method is the same as the nlc-method, except that this 
method has an additional step before any predictions are made. 
Community detection algorithms are run first on Gt (replaced by 
Gp after the first run) to detect the community structure Ct of a 
given network. Then Vnp is distributed to each community 
according to the number of its membership nodes. The total 
number of new nodes |Vnp| is multiplied by the relative size of 
each community (|ci| / |Vt|) when the number of nodes in a 
community is represented by |ci| (ci ∈ Ct). |Vnp| * (|ci| / |Vt|) new 
nodes are assigned to each community ci. The node prediction 
algorithm is run per communities to connect the assigned number 

of new nodes to the community. After the algorithm is run for all 
communities, the nodes and edges added per communities are 
joined to form Gnp. The method is identical to the nlc-method 
afterwards.  

3.2.3 Direct Community Detection 
Direct community detection uses only the community detection 
algorithms to test whether the community detection alone would 
be able to predict future communities in a network. This method 
is named the c-method. 

Without producing Gnp and Glp, the community detection module 
is run with Gt to produce Ct, a set of communities in time step t. It 
is used to predict communities in time step t+n.  

4. EXPERIMENTS 
4.1 Data  
Two citation networks are taken from the Stanford Large Network 
Dataset Collection1, using the citation list from the High Energy 
Physics (hepPh) and High Energy Physics Theory (hepTh) 
sections of physics in e-Print arXiv archive. Table 1 shows 
detailed information. The selected research fields have a tendency 
to have heavy citations, and networks are dense with number of 
edges exceeding the number of nodes by factor of 7 to 10. This is 
a common characteristic of citation networks, as many papers cite 
multiple papers. Dense graphs increase the likelihood of 
formation of new communities. 

The dataset contains a list of citation records, having a numeric id 
for each paper and the date of publication. Additional attributes 
are provided with hepTh dataset. This additional information can 
be used to label the communities found in hepTh. 

Table 1. Details of dataset used 

Name No. of Papers No. of Citations  
hepTh 18479 136428 
hepPh 30566  347414 

4.2 Evaluation Method 
The random predictor method is implemented as a baseline 
against which the results of this model are compared. In the 
random predictor method, the number of nodes to be added is the 
same as in the other algorithms, but the link prediction module is 
skipped and the network is randomly divided into n clusters 
where n is the number of communities found in the ground truth 
set from the given dataset. The link prediction module is skipped 
because it is not needed for the random predictor method to work; 
randomly partitioning a set of nodes does not need edge structure 
information. The baseline predictor is compared against 
community prediction methods in this paper. 

LPmade [17] is used to run the link prediction algorithms for the 
experiment. LPmade is a link prediction software package with a 
total of 21 link predictors implemented, including all the 
algorithms used in this paper.  

For community detection, the Python community detection library 
Community detection for NetworkX2 is used in this experiment. 
This library uses the Louvain method to detect and cluster 
communities in NetworkX3 format graphs. The Louvain method is 
an iterative two-module method; it first maximizes modularity by 
finding small communities, then coarsens the network and repeats 
the process until maximum modularity is achieved. 


1 http://snap.stanford.edu/data/ 
2 http://perso.crans.org/aynaud/communities/ 
3 http://networkx.lanl.gov/ 



The comparison of the predicted communities against the true 
result is not straightforward. Identification of membership nodes 
is required to identify the same community in two graphs, but 
predicted nodes do not have the same label as their actual 
counterparts. Any predicted node in this model has a new id 
attached to them, and it is impossible to match predicted nodes to 
new nodes in the true result, even if they are structurally identical. 

The Jaccard’s coefficient-like method is introduced in this paper 
to counter this problem. A similarity score sim(ci, cj) is calculated 
as |ci ∩ cj| / |ci ∪ cj| where |ci ∩ cj| is the number of nodes in both 
communities and |ci ∪ cj| is the number of nodes in either of two 
communities. Two communities are considered to have the same 
predecessor if they have sim(ci, cj) above a threshold 0 < 
threshold < 1. It is set to 0.5 in this experiment. Communities 
detected from the ground truth are compared against the 
experiment result to produce F-score F = 2 * (p*r) / (p/r) where p 
= |cmatched|/|ct+n| and r = |cmatched|/|cground truth|. 

4.3 Results 
4.3.1 Node Prediction 
Figure 5 illustrates the result of the heuristic node prediction 
algorithm on each dataset used in this paper. The X-axis 
represents the year, and the Y-axis represents the number of nodes. 
The heuristic method predicted the number of nodes with 
correlation coefficient r = 0.98 and 7.5% margin of error. 
Prediction performance is high in hepTh, but the module failed to 
capture a sudden change of actual node count in 2000 and 2002. 
The margin of error is 12% in hepTh. The drop of actual node 
count in 2002 can be explained in that the recording could have 
stopped before 2002 ended. Performance increases in the hepPh 
dataset. Discarding 2002 where the same drop occurs, the margin 
of error is 2.4% in hepPh with correlation coefficient r = 0.99.  

The edges added at the node prediction stage also show promising 
results.  Figure 6 shows the precision p = Enp∩Et+n / Enp and recall 
r = Enp∩Et+n / Et+n value of edges added in the node prediction 
module Enp with precision value as the X-axis and recall value as 
the Y-axis. Dotted lines show the performance of node prediction 
in the nc-method where the number of edges added per node 
varies with given data, while solid lines show the performance of 
node prediction when 1, 5, and 10 edges are predicted per node. 
The large gap found in Figure 5 suggests that the hepTh dataset in 
2000 and both datasets in 2002 are incomplete. Precision and 
recall values of Enp indeed show inconsistent results when 2000 
and 2002 data are tested; hence they are removed from Figure 6. 
hepTh is found to have an outlier in 1998; hence year 1998 is also 
removed. In both datasets, performance improves as more edges 
are added per node. This is true with up to 10 edges added per 
node. hepTh starts with low precision and low recall in 1995, and 
both precision and recall increase as the years go by. With the 
exception of hepPh-1e (one edge added per predicted nodes), 
hepPh in 1995 shows high precision and relatively low recall, and 
precision decreases with recall increasing relatively more. This 
pattern is limited by the number of average citations per paper, 
which is up to 16 in year 2002. The F-score (with beta = 1) peaks 
when 10 edges are added, and both precision and recall drop 
when 15 edges are added. When more edges are added, the node 
prediction module starts to over-predict, causing the F-score to 
drop. The graph shows that the node prediction works better on 
more complex datasets, and when the dataset grows in size. The 
nlc-method and the cnlc-method, however, add one edge per node 
in the node prediction module; this is intentionally done so the 

 

Figure 5. Node count |Vt| and |Vnp| per year  
in hepPh/hepTh dataset 

 

Figure 6. Precision versus recall of edges (Enp)  
in node prediction module. 

prediction of edges is performed in the link prediction module 
instead of the node prediction module. 

4.3.2 Link Prediction 
The model further predicts edges in the graph by using the link 
predictors mentioned in 3.1.2. Mean precision p = Elp∩Et+n / Elp 
and recall r = Elp∩Et+n / Et+n of edges predicted in the edge 
prediction module are shown in Table 2. Rooted PageRank is run 
with random walk restart parameter α = {0.01, 0.05, 0.25, 0.50} 
and Katz is run with damping parameter β = {0.5, 0.05, 0.005}. 
Changes in parameters have no visible effect on either algorithm, 
and results with different parameters for each method are merged 
together. 

Table 2. Precision and recall of Elp 

 hepTh hepPh 
Predictor Precision Recall Precision Recall 
Adamic/Adar   0.3443  0.0026  0.8584  0.0038 
Common neighbors  0.3443  0.0026  0.8584  0.0038 
Jaccard’s 
coefficient 

 0.3443  0.0026  0.8584  0.0038 

Katz  0.5721  0.1959  0.7148  0.3624 
Preferential 
attachment 

 0.5721  0.1959  0.7148  0.3624 

Rooted pagerank  0.5721  0.1959  0.7148  0.3624 
Simrank  0.0000  0.0000  0.0000  0.0000 

Simrank returns 0 for both precision and recall in both datasets, 
because the predicted nodes are weakly connected to the network 
with only one neighbor in any method with the link prediction 
module. The number of predictors used in this experiment utilizes 
neighborhood information and thus tends to predict edges 
between existing nodes Vt that have more neighbors. These edges, 
as explained before, are filtered out to mirror the characteristics of 
citation networks. As a result, Adamic/Adar, Common Neighbor, 
and Jaccard’s Coefficient failed to predict any new edges in 6 of 
the 16 test sets used. Simrank failed to predict any edge at all. 



4.3.3 Community Detection 
Community detection algorithms are run on graphs generated by 
node and link prediction modules, and the evaluation method 
presented in 4.2 is used to evaluate the result. The performance of 
the Louvain-smallest algorithm is higher with hepTh but is lower 
with hepPh. This suggests that the community detectors have little 
effect on the overall performance of the model compared to the 
specific structures of the given network.  

Using the community matching algorithm introduced in 4.2, 
Figure 7 compares the F-score of following-year predictions made 
by the nlc-method, the nc-method, the cnlc-method, and the c-
method with different combinations of community detection 
methods, datasets, and years as an X-axis and F-score as a Y-axis. 
The results of four methods are grouped at each column. The 
random predictor is not able to detect any communities in any of 
the test sets with threshold = 0.5, and hence is not presented. 

The c-method outperforms other methods in every test. The c-
method uses the current community structure to predict future 
communities, and this result proves that the communities do not 
change much in one year. The nc-method is the second best 
predictor in most of the cases; methods with more modules 
resulted in worse performance. It is also worth noticing that the 
performance increases as the graph grows in each dataset, while 
the smaller hepTh dataset returns a higher performance compared 
to the larger hepPh dataset.  

Figure 8 illustrates how much the F-score decreases when 
predictions are made for graphs five years in the future, calculated 
by Fscore(t+5) / Fscore(t+1). Figure 8 shows that the 
performance drop ratio of the c-method over five years depends 
on which dataset is used; this supports an earlier statement that 
the community predictors have relatively less effect on the 
performance change. 

The X-axis shows the combination of community detection 
algorithms and datasets grouped by four methods presented in this 
paper. The Y-axis represents the F-score ratio of predictions 5 
years in the future against predictions for the following year. 

The c-method assumes that the community structure does not 
change over time. Analyzing the c-method in Figure 8 suggests 
that the community structure changes more on the hepTh dataset. 

The Louvain-best algorithm in the hepTh dataset returned less 
than 5% of the initial prediction with all methods but the c-
method, which returned over 20%. This suggests that the growth 
in hepTh dataset is more random compared to hepPh and the 
community structure found by the Louvain-best algorithm in 
hepTh dataset is prone to random alteration. Methods other than 
the c-method change the community structure by adding nodes 
and edges and are unable to effectively mimic the growth of such 
graphs without introducing random factors large enough to alter 
the community structure of the graph. 

While the absolute F-score on the Louvain-smallest algorithm in 
Figure 7 was generally lower than that of Louvain-best algorithm, 
it is shown to have a lower performance drop over the years. The 
nc-method and the cnlc-method are able to retain 60% of original 
prediction performance after 5 years in hepPh dataset with the 
Louvain-smallest algorithm. This result is opposite that of the 
Louvain-best algorithm with hepTh; the c-method shows the 
largest performance drop in this combination. This shows that the 
nc-method and the cnlc-method work better as the size of a graph 
grows and as a graph is more fine-grained into more communities 
each with smaller sizes. 

 

Figure 7. F-score of 4 methods with different community 
detectors in hepTh/hepPh dataset for 1 year prediction. 

 

Figure 8. F-score ratio when prediction at t+5 is compared 
against prediction at t+1, with threshold = 0.5 

In short, the c-method can be used to predict the community 
structure in the near future. In the larger graph with fine-grained 
communities, the nc-method (lower computational complexity) or 
the cnlc-method (better result with wider range of input) can be 
used to predict further into the future. 

4.3.4 Identifying Emerging and Disbanding 
Communities 
The variance of the resulting performance varies for emerging / 
disbanding communities in the citation networks is also tested. 
The nc-method and the nlc-method are run with preferential-
attachment, which is used in the link prediction module. The 
Louvain-best algorithm is used in the community detection 
module, and months starting March 1996 from the hep-th dataset 
are used as time steps. A community matching algorithm 
proposed in 4.2 is replaced by more advanced version.  

Membership nodes in two compared communities c1 and c2 are 
first divided into two subsets, each containing 1) a series of nodes 
that were present before any prediction is made cold and 2) the 
newly added nodes cnew. As shown in Table 3, simold(c1, c2) and 
simnew(c1, c2) are calculated from respective node subsets from 
which sim(c1, c2) is derived. simold(c1, c2) and simnew(c1, c2) are 
each weighted with weight constant wold and wnew respectively. 
The resulting formula is wold * simold(c1,c2) + wnew * simnew(c1,c2) 
= sim(c1,c2), where wnew + wold =1 so that 0 ≤ sim(c1,c2) ≤ 1. 

Table 3. Community matching scheme 

 c1 c2 output 
Existing nodes c1,old c2,old simold(c1,c2) 

New nodes c1,new c2,new simnew(c1,c2) 



simold(c1, c2) is calculated in the same way explained in 4.2, 
replacing c1 and c2 with c1,old and c2,old. simnew(c1, c2) uses a 
different approach, since it is dealing with set of new nodes with 
random identifiers; comparing nodes with their identifiers is 
unfavorable. Only the number of nodes in the community is 
considered, and simnew(c1,c2) is therefore calculated as 
min(c1,new,c2,new) / max(c1,new, c2,new) with exceptional case where 
simnew(c1,c2) is set to 1 if max(c1,new,c2,new) is 0. 

Figure 9 shows the result of the nlc-method with the different 
weight combination of the new community detection algorithm 
having wold = 0 and wnew = 1 returning the best result. 

At each timestep, any newly emerged and disbanded communities 
are identified. Figure 10 shows that both methods in question (the 
nc-method and the nlc-method) show similar performance in 
detecting emerging communities, with the nlc-method starting to 
outperform the nc-method after about the 45th run. This result 
suggests that the link prediction module used in the nlc-method is 
better than the modified node prediction module used in the nc-
method; extrapolating the given citation network with more 
accurate network properties such as average node degrees, 
distance, and so on. 

Figure 10 also shows the F-score of communities found to be 
formed and disbanded. The disbanded result is very high in either 
method, increasing as the detection goes further. This shows that 
it is easier to detect communities that will be disbanded in the 
future than to detect communities that will be formed in the 
future. At the same time, this result also points to limitation of 
this experiment; each community is not tracked throughout the 
experiment but rather is individually identified at each timestep. 
With network structure continuously distorting at each timestep, it 
is possible that the communities identified do not reflect the past 
changes in their structure, influencing the output result. 

4.4 Discussion 
The experiments showed that citation networks can be used to 
successfully predict communities up to 5 years into the future. 
The contribution of the prediction methods to the success of the 
results can be analyzed according to each building block. The 
node prediction method shows promising results. 

The experiments show that the performance of the methods 
differs considerably based on the prediction time span. Short term 
predictions for a single year should use clustering (the c-method). 
The advantage of this method can be attributed to the 
communities’ slow pace of change in research that is represented 
by the change in the citation networks. However, as the prediction 
span increases, the performance of the per-community method 
(the clnc-method) increases much faster than that of the clustering 
method. Since the pace of new research topics varies between 
research fields, the assumption is that for slow changing fields 
with short prediction spans the c-method would be more useful 
while for faster changing fields and longer prediction spans the 
per-community method would be better.   

 The results indicated a limitation of the method: when there is a 
sudden extreme change in the number of nodes appearing in one 
year, then there is a gap between the predicted results and the true 
results. The experiments show that after one year the gap is 
minimized. One possible way to minimize the error in such cases 
is to consider the average change in multiple years in the past. 

Although the node prediction module achieves high performance, 
the link prediction achieves lower performance. Use of different  

 

Figure 9. F-score of the nlc-method with different  
wold & wnew values.  

 

Figure 10. F-score of newly emerged and disbanded 
communities in the nc/nlc-method with w1=0.0 and w2=1.0 

link prediction and community detection algorithms could 
increase the overall performance of community prediction. One 
possible solution for community detection is evolutionary 
clustering [5,13], which takes temporal consistency of the 
communities into account.  

Analysis of Figure 8 implies that all the methods work better on a 
more stable network. Methods introduced in this paper should be 
tested on more active citation networks where community 
structure frequently changes. Suggestions for additional work 
include the analysis of whether the break-even point for the best 
community detection method depends directly on the community 
size. Although the labeling of the community was not analyzed in 
the current work, there are some limitations that should be 
considered. The labeling is based on keyword extraction from 
existing papers. However, some of the nodes represent futuristic 
papers that have no attributed keywords. The labeling should take 
into consideration the number of existing paper nodes versus 
predicted nodes. The processing time of the algorithm is 
dependent on the number of citations and links. Of the two 
datasets, one was approximately double the size of the other and 
thus the performance time was approximately twice as long in all 
methods, thus indicating a linear complexity. The time required to 
analyze the biggest data set using the method that requires the 
longest processing time was approximately 10 minutes. 

5. CONCLUSION 
The paper presents a model for analyzing future communities in a 
citation network. The model includes a heuristic method to 
predict nodes, link prediction methods, and community detection 
methods, which are combined in various ways. Four community 
analysis methods are proposed. The analysis methods in the 



model show promising results in analyzing the possible 
communities in the future. The analysis time span was found to be 
a considerable factor in the performance of the community 
analysis methods.  

Directions of future research include addressing datasets in 
different fields and creating a measurement for the performance 
of each method derived from the characteristics of the network 
such as size, centrality, consistency, and so on. Another possible 
direction is to investigate the break-even point for community size 
versus different combinations of analysis methods. 

6. ACKOWLEDGEMENTS 
This work was supported by the Korean Government IT R&D 
program of MKE/KEIT. [Project No. 10035166, Development of 
Intelligent Tutoring System for Nursing Creative HR] 

7. REFERENCES 
[1] Adamic, L. and Adar, E. 2003. Friends and neighbors on the 

web. Social Networks. 25, 3 (Jul. 2003), 211–230. 

[2] Adams, J. 2005. Early citation counts correlate with 
accumulated impact. Scientometrics. 63, 3 (Jun. 2005), 567–
581. 

[3] Blondel, V.D. et al. 2008. Fast unfolding of communities in 
large networks. Journal of Statistical Mechanics: Theory and 
Experiment. 2008, 10 (Oct. 2008), P10008.1– P10008.12. 

[4] Chakrabarti, D. et al. 2006. Evolutionary clustering. 
Proceedings of the 12th ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining 
(2006), 554–560. 

[5] Chi, Y. et al. 2007. Evolutionary spectral clustering by 
incorporating temporal smoothness. Proceedings of the 12th 
ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining (2007), 153–162. 

[6] Fiscus, J.G. and Doddington, G.R. 2002. Topic detection and 
tracking evaluation overview. Topic detection and Tracking. 
17–31. 

[7] Garfield, E. et al. 1964. The use of citation data in writing 
the history of science. Institute for Scientific Information. 

[8] Gibson, D. et al. 1998. Inferring web communities from link 
topology. Proceedings of the 9th ACM Conference on 
Hypertext and Hypermedia (1998), 225–234. 

[9] Jeh, G. and Widom, J. 2002. SimRank: a measure of 
structural-context similarity. Proceedings of the 8th ACM 
SIGKDD International Conference on Knowledge Discovery 
and Data Mining (2002), 538–543. 

[10] Katz, L. 1953. A new status index derived from sociometric 
analysis. Psychometrika. 18, 1 (1953), 39–43. 

[11] Kwak, H. et al. 2009. Mining communities in networks: a 
solution for consistency and its evaluation. Proceedings of 
the 9th ACM SIGCOMM conference on Internet 
measurement conference (2009), 301–314. 

[12] Lancichinetti, A. et al. 2008. Benchmark graphs for testing 
community detection algorithms. Physical Review E. 78, 4 
(Oct. 2008), 046110.1-046110.5. 

 

 

 

[13] Leskovec, J. et al. 2008. Microscopic evolution of social 
networks. Proceeding of the 14th ACM SIGKDD 
International Conference on Knowledge Discovery and Data 
Mining (2008), 462–470. 

[14] Leskovec, J. and Faloutsos, C. 2007. Scalable modeling of 
real graphs using Kronecker multiplication. Proceedings of 
the 24th International Conference on Machine Learning 
(2007), 497–504. 

[15] Lewis-Beck, M.S. and Tien, C. 1999. Voters as forecasters: a 
micromodel of election prediction. International Journal of 
Forecasting. 15, 2 (Apr. 1999), 175–184. 

[16] Liben-Nowell, D. and Kleinberg, J. 2007. The link-
prediction problem for social networks. Journal of the 
American Society for Information Science and Technology. 
58, 7 (2007), 1019–1031. 

[17] Lichtenwalter, R.N. and Chawla, N.V. 2011. LPmade: Link 
prediction made easy. Journal of Machine Learning 
Research. 12, 1 (2011), 2489–2492. 

[18] Newman, M.E.J. 2001. Clustering and preferential 
attachment in growing networks. Physical Review E. 64, 2 
(2001), 25–102. 

[19] Newman, M.E.J. 2006. Modularity and community structure 
in networks. Proceedings of the National Academy of 
Sciences. 103, 23 (Jun. 2006), 8577–8582. 

[20] Otte, E. and Rousseau, R. 2002. Social network analysis: a 
powerful strategy, also for the information sciences. Journal 
of Information Science. 28, 6 (Dec. 2002), 441–453. 

[21] Rosvall, M. and Bergstrom, C.T. 2008. Maps of random 
walks on complex networks reveal community structure. 
Proceedings of the National Academy of Sciences of the 
United States of America. 105, 4 (Jan. 2008), 1118–1123. 

[22] Salton, G. and McGill, M.J. 1986. Introduction to modern 
information retrieval. McGraw-Hill, Inc. 

[23] Seshadhri, C. et al. 2011. An In-depth Study of Stochastic 
Kronecker Graphs. 2011 IEEE 11th International 
Conference on Data Mining (Dec. 2011), 587–596. 

[24] Sun, J. et al. 2010. Community evolution and change point 
detection in time-evolving graphs. Link Mining: Models, 
Algorithms and Applications. 73–104. 

[25] Tong, H. et al. 2008. Internet users’ psychosocial attention 
prediction: web hot topic prediction based on adaptive AR 
Model. International Conference on Computer Science and 
Information Technology (Aug. 2008), 458–462. 

[26] Yang, Y. et al. 2002. Topic-conditioned novelty detection. 
Proceedings of the 8th ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining 
(2002), 688–693. 

[27] Zhang, J. et al. 2005. A probabilistic model for online 
document clustering with application to novelty detection. In 
Proceedings of the 18th Annual Conference on Neural 
Information Processing Systems (2005), 1617–1624. 

[28] Zheleva, E. et al. 2010. Using friendship ties and family 
circles for link prediction. Advances in Social Network 
Mining and Analysis (2010), 97–113. 


