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Citation networks contain temporal information about what researchers are interested in at a certain
time. A community in such a network is built around either a renowned researcher or a common research
field; either way, analyzing how the community will change in the future will give insight into the
research trend in the future. The paper views the research community as a Social Web where the
communication is through academic papers. The paper proposes methods to analyze how communities
change over time in the citation network graph without additional external information and based on
node and link prediction and community detection. Different combinations of the proposed methods
are also analyzed. The identified communities are classified using key term labeling. Experiments show
that the proposed methods can identify the changes in citation communities multiple years in the future
with performance differing according to the analyzed time span. Furthermore, the method is shown to
produce higher performance when analyzing communities to be disbanded and to be formed in the
future.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Citation networks represent a picture of the current situation of
research information in a specific field. The network therefore
represents communities centered on a specific researcher or on a
shared research field. Analyzing how the community will change
in the future will give insight into the research trend in the future
and how a field will evolve.

Citation network analysis originated with the paper of Garfield
et al. (1964) [17], which showed that the analysis indicated a high
degree of coincidence between a historian’s account of events and
the citational relationship between these events. The present work,
however, takes the opposite approach and looks to the future: it
examines whether the prediction of citation networks can assist
in the analysis of future events.

The paper presents a new perspective of viewing the research
community as a Social Web where the communication is through
academic papers. The goal of the paper is to assist a community
member in making a decision as to what ‘‘products’’ (research
topics) are good and what topics are less trendy. The idea of using
a social analysis approach on the academic community is the main
contribution of this work.

The paper presents several methods to analyze how communi-
ties change over time in the citation network. The methods are
based on a graph representation of the citation community at given
time stamps with nodes representing papers and edges represent-
ing citations. External information such as author names, institu-
tions, and existing keyword classifications is not used. The
prediction methods are composed of different combinations of
proposed building block algorithms for node prediction, edge pre-
diction, and community detection. The node prediction analyzes
the change in previous years in the number of citations and gives
higher probability to highly cited papers. After the node prediction,
six link prediction algorithms are compared to analyze the perfor-
mance. The analysis showed that the link prediction methods can
be classified into two categories that contribute to the performance
of the community detection. The Louvain method is used as the
basic community detection method. Three topic detection methods
are used to label the detected communities. The TF/IDF (Term Fre-
quency/Inverse Document Frequency) method is a widely accepted
method in IR (Information Retrieval) and is used to extract repre-
sentative terms, in this case labels, from documents. The Keyword
Extraction method uses a statistical algorithm and natural lan-
guage process technology to analyze the text and identify terms
of importance. The Concept Tagging method gives a high-level
abstraction of a given text by utilizing natural language process
techniques with external databases such as DBpedia or OpenCyc
and returns concepts which were not directly mentioned in
the text itself. The basic community analysis building blocks are
organized in four different methods to provide an analysis of the
order in which the methods can be used and of their individual
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contribution to the performance of the prediction. To analyze the
models, two citation networks from the Stanford Large Network
Dataset Collection from High Energy Physics Theory (18,479
papers, 136,428 citations) and High Energy Physics (30,566 papers,
347,414 citations) are used.

The rest of the paper is organized as follows. The next section
reviews the related work. Section 3 describes the methods used
for analyzing future communities in citation networks. Section 4
presents the experiments on citation networks, and Section 5 pro-
vides a further discussion of the results. Finally, Section 6 provides
some concluding remarks.

2. Related work

2.1. Topic Detection and Prediction

Topic Detection and Prediction has been studied in many
research fields, to identify newly emerging topics and to capture
the possible topics of given documents respectively. Topic Detec-
tion and Tracking (TDT) [15] is a multi-site research project aiming
to predict novel topics. Its goal is to find a new topic in news sys-
tems by effectively identifying the first article or report mentioning
the new topic [3]. There have been many studies using Natural Lan-
guage Processing (NLP) topic detection approaches. The Adaptive
Auto Regression (AR) model based on the Recursive Weighted Least
Square (RWLS) method is presented to capture the Internet users’
psychosocial attention behavior on how ‘hot’ topics such as ‘Olym-
pic Games’ grow on the Internet [42]. The topic-conditioned First
Story Detection (FSD) method in conjunction with a supervised
learning algorithm [44,45] and Document Clustering [46] are used
to identify the earliest report on a certain event in news articles.
Other methods are also used in topic predictions. Survey analysis
has been used to predict the result of a presidential election [26].

2.2. Topic modeling

Latent Dirichlet Allocation (LDA) [5] is a generative probabilistic
model using a three-level hierarchical Bayesian model to model
multiple topics from collections of text corpora. Its expandable
nature has enabled many researchers to build models on top of it.
Hierarchical LDA [6] creates a hierarchy of topics using a random
partition process called the Chinese restaurant process. LDA-dual
model [38] is an extension of the LDA model introduced to
simultaneously deal with two types of text to solve the author
disambiguation problem. Labeled LDA (L-LDA) [34] is an extension
of multinomial Naïve Bayes supervised LDA where topics are
constrained to those that directly correspond to the labels of a given
document. Spatial LDA (SLDA) [43] is used to graphically categorize
and identify images by treating images as documents and partial
sections as words.

Commonsense knowledge, or human knowledge, is introduced in
opinion mining [9] to catch topics incomprehensible by statistical
textual models, such as poetry. LDA with WordNet (LDAWN) [8]
incorporated the word sense into LDA by using the WordNet
lexicon. Commonsense-based Topic Modeling [33] uses human
commonsense data instead of common a bag-of-words model. While
LDA solved some of the issues such as the overfitting problem, its
performance still depends on the volume of the given text corpus
with which it is trained. The model proposed here does not require
training and can capture the meaning of phrases such as ‘‘getting
fired’’ as opposed to bag-of-words based models such as LDA.

2.3. Topic identification

Topic detection focuses on finding a new topic, provided by
either the experimenter [19] or the NLP method. Generative
models are used to generate documents by selecting a distribution
over topics and then selecting each word in the document from a
topic chosen according to this distribution [19]. Generative models
are used to analyze research paper abstracts from Proceedings of
the National Academy of Sciences (PNAS) in order to generate a
number of topics which successfully resemble the data structure.
Identifying communities in web pages revealed that the communi-
ties exhibit hierarchical topic generalization characteristics, show-
ing that the communities in a general setting are shown to reveal
common properties of their members such as a common viewpoint
or related topics [18]. Dynamic Community Identification [4] can
therefore have a large role in topic identification. The conventional
definition of communities as ‘‘unusually densely knit subsets of a
social network’’ is argued as misleading in dynamic social commu-
nities in [41], which proposed an optimization-based approach for
modeling dynamic community structure; it is shown to accurately
track the dynamic community structure of social networks.

2.4. Link prediction

Link prediction models the evolution of a network using its
topological characteristics and primarily deals with the prediction
of edges between existing nodes. There are a number of different
approaches to link prediction [27]. The shortest path between
two nodes in a graph is a simple measure of link prediction. Some
methods, such as Common Neighbors [30], Jaccard’s coefficient
[36], Preferential Attachment [30], and Adamic/Adar [1], use the
node neighborhood information. The whole path within the net-
work can also be used in link prediction, for example Katz [21],
Simrank [20], and Rooted PageRank [27]. Common to those algo-
rithms is that they do not deal with addition of nodes and deletion
of edges. Their purpose is to generate a ranked list of predictive
edges between existing nodes in a given network. The Community
Prediction Method in the Citation Networks section outlines the
differences between these methods and the contribution of each
of these methods to the prediction.

2.5. Community detection

Community detection searches structural information of a given
graph to partition it into sub-graphs called communities or mod-
ules [23]. Agglomerative methods and divisive methods are com-
monly used in community detection. Newman’s community
detection algorithm [31] is a widely used agglomerative method
that uses modularity as the quality function. The recently devel-
oped Louvain method [7] is an agglomerative method and is com-
monly used because of its low computational complexity and high
performance. When merging communities, this method considers
not only the modularity but also the consolidation ratio. These
algorithms, however, do not consider temporal information and
disregard important factors such as consistency. Community Evo-
lution [40] and Evolutionary Clustering [10,12,13] take the tempo-
ral changes in networks into consideration. There have also been
studies about utilizing communities with link predictions. Family
and friendship ties can be regarded as known community struc-
tures and are shown to help in predicting links in social networks
[47]. The current work proposes a set of models based on temporal
graphs and community prediction techniques.
3. Community prediction method in citation networks

Citation networks are directed social networks [32] between
research papers, with nodes as papers and edges as citations
between them. It is a form of a network where link prediction
can be applied without extra considerations about deleted edges



Fig. 1. Illustration of a predicted graph.

Fig. 2. Example of the node prediction process (the incoming node has to change to
3).
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or nodes; nodes and edges never disappear from citation networks.
Community detection algorithms have been proven to detect com-
munities in existing social networks [35] as well. The goal of this
research is to predict changes in community structures of citation
networks by utilizing link prediction and community detection
algorithms. The proposed model is explained next.

A graph G at certain time step t is represented by Gt = (Vt, Et) and
is composed of a set of nodes Vt and a set of edges Et. Three time
steps t � 1 < t < t + n are chosen; Gt�1 and Gt are the test set and
Gt+n is the ground truth n time steps later. Fig. 1 illustrates how
the graph grows with node and edge prediction. The node predic-
tion algorithm explained in Section 3.1.1 is first run on Gt�1 and Gt.
The set of predicted nodes Vnp is connected to existing nodes Vt by
corresponding edges Enp where Gnp = (Vnp, Enp), a component of the
predicted graph. Gnp combined with Gt represents the citation net-
work after node prediction is made. It is fed to a set of link predic-
tion algorithms explained in Section 3.1.2. A list of predicted edges
is filtered so that only edges esource,target 2 Elp with start point
source 2 Vnp and endpoint target 2 Vt remain. This filtering is neces-
sary to mimic the characteristics of citation networks where new
edges can only form from a new node to existing ones. Only edges
are added; hence a graph component added in link prediction Glp

can be represented as Glp = (/, Elp). Merging Glp with previous graph
Gt and Gnp forms Gp, a graph predicted to be at time step t + 1. This
process is repeated n times (with Gp instead of Gt after the first iter-
ation) to predict a graph t + n time steps in the future. Community
detection algorithms explained in Section 3.1.3 are then used, in
turn returning a predicted community structure Cp. Each commu-
nity ci in Cp is a subset of nodes Vp =

P
ci in a given graph Gp, with

i ranging from 1 to the number of communities in Cp.

3.1. Base method

3.1.1. Node prediction
In this paper, a new method is presented to predict the list of

nodes in a citation network predicted to appear in a future time-
stamp. The cumulative nature of citation networks suggests that
an edge e(i, j) 2 Et in each citation network Gt = (Vt, Et) represents
a citation from paper i to j created up to time step t. As a paper can-
not cite another paper after its publication, all edges e(i, j) created
in time step t must have a node created in the same time step as its
start point i. The link prediction method does not deal with crea-
tion of nodes; hence additional consideration is necessary to deal
with such nodes.

A simple heuristic is used to predict the number of nodes to be
added in the next time step, since the graph continues to grow and
the number of new publications (nodes) per time step stays about
the same. The number of nodes to create (DV for future reference)
can be predicted as below;

DV ¼ jVtj � jVt�1j

where |Vt| represents the number of nodes in Vt.
Node-specific information is not required since it is impossible

to predict the labels of new nodes. Added nodes Vnp are given new
unique ids to identify themselves from existing nodes Vt. Then the
set of edges Enp is created to connect Vnp to Vt. This step is necessary
as nodes unconnected to the main graph contain no structural
information and hence will not receive any attention during link
prediction. At least one edge should be added for each predicted
node to connect them to the given graph. Based on well-known
Preferential Attachment, the ‘‘rich-gets-richer’’ phenomenon in
research society, initial citation counts have impact on future cita-
tions [2]; hence a highly cited paper has a greater chance to be
cited again. Nodes with higher in-degree count are considered to
have higher probability of having an in-bound edge from a new
node. The Kronecker Graph generation method [25] can capture
more graphical features of a given graph, but the number of nodes
is increased exponentially [37]; a citation network does not grow
in such a way. Hence the method is not used in this paper.

Fig. 2 shows an example of node prediction based on a graph at
t � 1 (Fig. 2a) and t (Fig. 2b). Numbers written in the nodes show
their in-bound edge count. In this example, one node (indicated
by a red circle) is added in Fig. 2b; hence one node is predicted
to appear in Gt+1 (Fig. 2c).

For every node created, an outgoing edge is also created. When
C(v) consists of the inbound neighbors of the node v, each node v
in Vt has a select factor sp proportional to the number of inbound
neighbors |C(v)| to become an endpoint for such edges; papers that
have never been cited before – nodes with no inbound edges – have
sp = 0 and hence are never selected. In Fig. 2c, four candidates for Enp

shown with dotted lines have varying width, and one is chosen for
Gnp to connect the new node to the original network with probabil-
ity proportional to the in-degree count of endpoint nodes (Fig. 2d).
In one of the alternative methods explained in Section 3.2.1, this
module is modified so multiple edges are added instead of one.
The performance changes are analyzed in the experiments.

The result is a set Gnp = (Vnp, Enp) with nodes Vnp, each connected
to one of the original nodes by edge set Enp. Gnp with Gt forms a pre-
dicted graph after node prediction is completed. Link prediction is
then run on the network Gt and Gnp combined in order to predict
new outgoing edges from such new nodes.

3.1.2. Link prediction
After the node prediction is completed, we analyze the resulting

network using the six link prediction algorithms summarized in
Table 1. We chose these methods to provide different perspectives
for our analysis of the link prediction.

Link prediction models the evolution of a network using its
topological characteristics and primarily deals with the prediction
of edges between existing nodes. There are a number of different
approaches to link prediction [27]; with the shortest path between
two nodes in a graph as a simplest measure of link prediction.
Common to these algorithms is that they do not deal with addition
of nodes and deletion of edges. Their purpose is to generate a
ranked list of predictive edges between existing nodes in a given



Table 1
List of link prediction algorithms.

Common Neighbors |C(x) \ C(y)|
Jaccard’s Coefficient |C(x) \ C(y)|/|C(x) [ C(y)|
Adamic/Adar

P
z2C(x)\C(y) (1/log|C(z)|)

Preferential Attachment |C(x)| � |C(y)|
Katzb

P
‘=1 to 1 b‘ � |pathsx,y

(‘)|
where pathsx,y

(‘) :¼ {paths of length exactly ‘ from x to y}
weighted: pathsx,y

(‘) :¼ number of collaborations between x and y
unweighted: pathsx,y

(‘) :¼ 1 iff x and y collaborate
Rooted PageRanka Stationary distribution weight of y under the following random walk:

with probability a, jump to x
with probability 1 � a, go to a random neighbor of current node

SimRankc 1 if x = y
c �
P

a2C(x)
P

b2C(y)score(a, b)/(|C(x)| � |C(y)|) otherwise
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network. The Community Prediction Method in the Citation Net-
works chapter outlines the differences between these methods
and the contribution of each of these methods to the prediction.

3.1.2.1. Methods utilizing node neighborhood. Some methods use the
node neighborhood information in order to perform link predic-
tion. The Common Neighbors method [30] is born from an idea that
any two nodes will likely be connected by a link in the future if
they have a large number of Common Neighbors. With C(x) repre-
senting the set of neighbors of the node x, Common Neighbors cal-
culates the connection weight of hx, yi node pairs by calculating

scoreðx; yÞ :¼ jCðxÞ \ CðyÞj

A more evolved idea of Common Neighbors is Jaccard’s coefficient
[35]. The Common Neighbors method cannot distinguish node pairs
hx, yi and hv, wi when two pairs have the same ten Common Neigh-
bors when the nodes in the former pair have ten neighbors each – in
which case every one of their neighbors is common – while the
nodes in the latter pair have hundreds of neighbors each. Jaccard’s
coefficient calculates the relative fraction of Common Neighbors
by considering the number of total neighbors in both nodes; the for-
mula is

scoreðx; yÞ :¼ jCðxÞ \ CðyÞj=jCðxÞ [ CðyÞj

Adamic/Adar is born from a similarity measure for websites and is
similar to Jaccard’s coefficient in principle. The Adamic/Adar
method refines the measurement by weighting rarer features –
nodes with smaller neighbor counts more. Initial measurement
introduced

P
z:feature shared by x,y (1/log(frequency(z))) is altered to

form the formula

scoreðx; yÞ :¼
X

z2CðxÞ\CðyÞ
ð1= logðCðzÞÞÞ

Preferential Attachment [30] is a network growth model used for
graph generation as well as link prediction. The basic assumption
of this measure is the simple heuristic thought of the ‘‘rich-gets-
richer’’ phenomenon found in various areas such as Physics [14]
and Ecology [39]. In Preferential Attachment, a node x is more likely
to have a new link pointing towards it as its neighbor count C(x)
grows. Further proposed by Newman [30], the measure is defined as

scoreðx; yÞ :¼ jCðxÞj � jCðyÞj
3.1.2.2. Methods utilizing the whole path within the network. Katz
[21] more or less has a similar notion to the Common Neighbor
with one difference; Common Neighbor considers Common Neigh-
bors, which can be translated as paths with length 2, but Katz con-
siders paths with multiple lengths where pathsl

x;y represents the
set of all paths from x to y with length l. To count the shorter paths
heavier, the score is exponentially damped by path length with
damping factor b > 0; when b becomes small enough, paths with
length more than 2 will mostly be damped out and the result will
be much like Common Neighbors.

scoreðx; yÞ :¼
X

l

bl � jpathsl
x;yj

Rooted PageRank [27] and Simrank [20] use the notion of random
walk. Rooted PageRank is a stationary distribution propagated by
random walk with reset. Simrank measures when two random
walks with different starting nodes first meet. Two nodes are con-
sidered to be similar based on how much they are connected to sim-
ilar neighbors. The similarity of two nodes are calculated as follows;
one node has a similarity of 1 with itself, and the similarity of two
different nodes is positively correlated with the sum of all the sim-
ilarity scores of their neighbor pairs and is negatively correlated
with the product of their neighbor counts.

scoreðx; yÞ :¼ similarityðx; yÞ :

¼ r �
X

a2CðxÞ

X

b2CðyÞ
similarityða; bÞ=ðjCðxÞj � jCðyÞjÞ
3.1.3. Community detection
This paper uses two algorithms of the Louvain method [22],

Louvain-smallest algorithm and Louvain-best algorithm, to analyze
the community detection. The Louvain-smallest algorithm returns
a smallest partition of the graph and the Louvain-best algorithm
returns a more coarse-grained partition where the graph is parti-
tioned into fewer (and larger) communities.

A list of communities C is produced from graph G with commu-
nity detection algorithms. Each community ci 2 C consists of a sub-
set of nodes V in a given graph G. In this model, community
detection is implemented with both the predicted network and
with the true result. The lists of communities are then compared
to evaluate the result; Gp is fed to community detection algorithms
to produce Cp while Gt+n is used to create Ct+n.
3.2. Methods based on combinations of building blocks

Three alternative methods of the given model, referred as the
nlc-method, are also proposed in this paper. Fig. 3 outlines how
the modules explained above are used as building blocks. ‘N’ode
prediction (Section 3.1.1), ‘L’ink prediction (Section 3.1.2), and
‘C’ommunity detection (Section 3.1.3) are each visualized as a
block, and each method consists of a series of modules used in
left-to-right sequential order. For example, the base method in
Fig. 3 requires the node prediction module to be used first, the link
prediction module second, and then the community detection
module.



Fig. 3. Outline of methods.
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3.2.1. Heuristic prediction
The nlc-method adds an edge per node predicted by the node

prediction module. The purpose of these edges is to act as catalysts
in the link prediction module, allowing newly added nodes to have
a chance of getting a non-zero similarity score with other nodes.
This enables the link prediction module to predict more edges con-
nected to the new nodes.

In the heuristic prediction method (the nc-method), it is
assumed that the preferential-attachment approach used in the
node prediction module is able to predict edges to some extent.
To test this hypothesis, the link prediction module is omitted and
the node prediction module is modified in this method; more
edges are added in the node prediction module to compensate
for the loss of predicted edges. The number of edges to add per pre-
dicted node in time step t is calculated as m = DE/DV where
DE = |Et| � |Et�1|. After the node prediction module is executed,
adding m edges instead of one, Gnp is set to be Gp, a predicted graph
at time step t + 1. The same method is repeated on Gp n times to get
a predicted graph at time step t + 1. The number of edges added per
node is data dependent. If a fixed number is used, the method risks
either not predicting enough edges in a complex graph or predict-
ing too many edges in a simple graph, resulting in poor prediction
performance.

3.2.2. Per-Community Prediction
A better result is obtained when link predictions are done on

top of known communities in a network [47]. The Per-Community
Prediction method (the cnlc-method) is proposed to evaluate
whether communities found by community detection methods
can also be used to improve the accuracy of edges added in the link
prediction module.

The cnlc-method is the same as the nlc-method, except that this
method has an additional step before any predictions are made.
Community detection algorithms are used first on Gt (replaced by
Gp after the first iteration) to detect the community structure Ct

of a given network. Then Vnp is distributed to each community
according to the number of its membership nodes. The total num-
ber of new nodes |Vnp| is multiplied by the relative size of each
community (|ci|/|Vt|) when the number of nodes in a community
is represented by |ci| (ci 2 Ct). |Vnp| � (|ci|/|Vt|) new nodes are
assigned to each community ci. The node prediction algorithm is
used per communities to connect the assigned number of new
nodes to the community. After the algorithm is used for all
communities, the nodes and edges added per communities are
joined to form Gnp. The method is identical to the nlc-method
afterwards.

3.2.3. Direct community detection
Direct community detection uses only the community detection

algorithms to test whether the community detection alone would
be able to predict future communities in a network. This method
is named the c-method.

Without producing Gnp and Glp, the community detection mod-
ule is executed with Gt to produce Ct, a set of communities in time
step t. It is used to predict communities in time step t + n.
3.3. Community labeling

In citation networks, keywords of the papers can be useful in
labeling the detected communities. Many publications include key-
words representing the main concepts in each paper for indexing
purposes. With labels treated as topics in topic detection methods,
a community can be distinguished by a set of common keywords
appearing among its papers. A similar approach is adopted in this
paper. The labeling methods used in this paper utilize the title and
abstract of the research papers in order to find a list of terms – key-
words – using natural language processing. For each community C,
textc on which NLP is performed is created by concatenating the
title and abstract of C’s membership papers c.

Preprocessing is performed on the terms list by first tokenizing
each document with the space character as the separator and then
removing any token with length less than 3 in order to remove
obvious stop words. By using a large enough corpus of documents,
irrelevant terms are more distinct and can be thrown away with a
higher confidence. To extract a list of representative keywords, or
labels, for each community the following methods were used: TF/
IDF (Term Frequency/Inverse Document Frequency), Concept Tag-
ging, and Keyword Extraction.

TF/IDF is widely used in IR to extract a list of representative key-
words from a corpus of documents and is well known for its robust
performance on a large enough dataset. The inverse document fre-
quency is calculated as the ratio between the total number of doc-
uments and the number of documents that contain the term. TF/
IDF is obtained by dividing each term’s term frequency by its
inverse document frequency, with textc of each community as a
document.

The Concept Tagging method creates lists of the main concepts
to mimic human-based tags. The Keyword Extraction method
extracts all the topic keywords to index the content. The Keyword
Extraction is based on words in the text, while the Concept Tagging
can include concepts represented as words that do not necessarily
appear in the text. AlchemyAPI (http://www.alchemyapi.com/) is a
popular natural language processing service via API, providing
users with a rich suite of content analysis and metadata annotation
tools such as semantic metadata extraction about people, places,
and topics. Keyword Extraction and Concept Tagging are per-
formed based on AlchemyAPI. Each method takes a text or URL
as an input and returns a set of keywords or concepts respectively,
with their relevance score varying from 0 to 1. In addition, we use
the Keyword Extraction method to analyze the given text to find
the sentiment score. The Concept Tagging method utilizes multiple
algorithms such as semantic tagging, text mining, and machine
learning techniques [29] and shows the related information about
the found concept in the form of links to an external website such
as DBpedia. Each method is run with textc of each community as an
input text. Opinion mining tools such as Sentilo [16] or SenticNet
[10] can also be used to enhance the outcome with a more senti-
ment-sensitive dataset. Sentiment classification can further be
improved by incorporating domain-specific features and sample
selection [44].
4. Experiments

4.1. Data

Two citation networks are taken from the Stanford Large Net-
work Dataset Collection (http://snap.stanford.edu/data/), using
the citation list from the High Energy Physics (hepPh) and High
Energy Physics Theory (hepTh) sections of physics in e-Print arXiv
archive. Table 2 shows detailed information. The selected research
fields have a tendency to have heavy citations, and networks are

http://www.alchemyapi.com/
http://www.snap.stanford.edu/data/
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dense with the number of edges exceeding the number of nodes by
factor of 7–10. This is a common characteristic of citation net-
works, as many papers cite multiple papers. Dense graphs increase
the likelihood of formation of new communities.

The dataset contains a list of citation records, having a numeric
id for each paper and the date of publication. Additional attributes
are provided with hepTh dataset. This additional information can
be used to label the communities found in hepTh.

4.2. Evaluation method

The random predictor method is implemented as a baseline
against which the results of this model are compared. In the ran-
dom predictor method, the number of nodes to be added is the
same as in the other algorithms, but the link prediction module
is skipped and the network is randomly divided into n clusters,
where n is the number of communities found in the ground truth
set from the given dataset. The link prediction module is skipped
because it is not needed for the random predictor method to work;
randomly partitioning a set of nodes does not need edge structure
information. The baseline predictor is compared against commu-
nity prediction methods in this paper. LPmade [28] is used to per-
form the link prediction algorithms for the experiment.

For community detection, the Community detection for NetworkX
(http://perso.crans.org/aynaud/communities/) is used in this
experiment, which uses the Louvain method to detect and cluster
communities in NetworkX (http://networkx.lanl.gov/) format
graphs. The Louvain method is an iterative two-module method;
it first maximizes modularity by finding small communities, then
coarsens the network and repeats the process until maximum
modularity is achieved.

The comparison of the predicted communities against the true
result is not straightforward. Identification of membership nodes
is required to identify the same community in two graphs, but pre-
dicted nodes do not have the same label as their actual counter-
parts. Any predicted node in this model has a new id attached to
them, and it is impossible to match predicted nodes to new nodes
in the true result, even if they are structurally identical.

The Jaccard’s coefficient-like method is introduced in this paper
to counter this problem. A similarity score sim(ci, cj) is calculated
as |ci \ cj|/|ci [ cj| where |ci \ cj| is the number of nodes in both
communities and |ci [ cj| is the number of nodes in either of two
communities. Two communities are considered to have the same
predecessor if they have sim(ci, cj) above a threshold 0 < thresh-
old < 1. It is set to 0.5 in this experiment. Communities detected
from the ground truth are compared against the experiment result
to produce F-score F = 2 � (p � r)/(p + r) where p = |cmatched|/|ct+n| and
r = |cmatched|/|cground truth|.

4.3. Results

4.3.1. Node prediction
Fig. 4 illustrates the result of the heuristic node prediction algo-

rithm on each dataset used in this paper. The X-axis represents the
year, and the Y-axis represents the number of nodes. The heuristic
method predicted the number of nodes with correlation coefficient
r = 0.98 and 7.5% margin of error. Prediction performance is high in
hepTh, but the module failed to capture a sudden change of actual
Table 2
Details of dataset used.

Name No. of papers No. of citations

hepTh 18,479 136,428
hepPh 30,566 347,414
node count in 2000 and 2002. The margin of error is 12% in hepTh.
The drop of actual node count in 2002 can be explained in that the
recording could have stopped before 2002 ended. Performance
increases in the hepPh dataset. Discarding 2002 where the same
drop occurs, the margin of error is 2.4% in hepPh with correlation
coefficient r = 0.99.

The edges added at the node prediction stage, representing new
citations, also show promising results. Fig. 5 shows the precision
p = Enp \ Et+n/Enp and recall r = Enp \ Et+n/Et+n value of edges added
in the node prediction module Enp with precision value as the X-
axis and recall value as the Y-axis. Dotted lines show the perfor-
mance of node prediction in the nc-method where the number of
edges added per node varies with given data, while solid lines
show the performance of node prediction when 1, 5, and 10 edges
are predicted per node. The large gap found in Fig. 4 suggests that
the hepTh dataset in 2000 and both datasets in 2002 are incom-
plete. Precision and recall values of Enp indeed show inconsistent
results when 2000 and 2002 data are tested; hence they are
removed from Fig. 5. hepTh is found to have an outlier in 1998;
hence year 1998 is also removed. In both datasets, performance
improves as more edges are added per node. This is true with up
to 10 edges added per node. hepTh starts with low precision and
low recall in 1995, and both precision and recall increase as the
years go by. With the exception of hepPh-1e (one edge added per
predicted nodes), hepPh in 1995 shows high precision and rela-
tively low recall, and precision decreases with recall increasing rel-
atively more. This pattern is limited by the number of average
citations per paper, which is up to 16 in year 2002. The F-score
(with beta = 1) peaks when 10 edges are added, and both precision
and recall drop when 15 edges are added. When more edges are
added, the node prediction module starts to over-predict, causing
the F-score to drop. The graph shows that the node prediction
works better on more complex datasets and when the dataset
grows in size. The nlc-method and the cnlc-method, however, add
one edge per node in the node prediction module; this is intention-
ally done so the prediction of edges is performed in the link predic-
tion module instead of the node prediction module.
4.3.2. Link prediction
The model further predicts edges in the graph by using the link

predictors mentioned in Section 3.1.2. Mean precision p = Elp \ Et+n/
Elp and recall r = Elp \ Et+n/Et+n of edges predicted in the edge pre-
diction module are shown in Table 3. Rooted PageRank is used with
random walk restart parameter a = {0.01, 0.05, 0.25, 0.50}, and
Katz is used with damping parameter b = {0.5, 0.05, 0.005}.
Changes in parameters have no visible effect on either algorithm,
and results with different parameters for each method are merged
together.

Simrank returns 0 for both precision and recall in both datasets,
because the predicted nodes are weakly connected to the network
with only one neighbor in any method with the link prediction
module. The number of predictors used in this experiment utilizes
neighborhood information and thus tends to predict edges
between existing nodes Vt that have more neighbors. These edges,
as explained before, are filtered out to mirror the characteristics of
citation networks. As a result, Adamic/Adar, Common Neighbor,
and Jaccard’s Coefficient failed to predict any new edges in 6 of
the 16 test sets used. Simrank failed to predict any edge at all.
4.3.3. Community detection
Community detection algorithms are used on graphs generated

by node and link prediction modules, and the evaluation method
presented in Section 4.2 is used to evaluate the result. The perfor-
mance of the Louvain-smallest algorithm is higher with hepTh but
is lower with hepPh. This suggests that the community detectors

http://www.perso.crans.org/aynaud/communities/
http://www.networkx.lanl.gov/


Fig. 4. Node count |Vt| and |Vnp| per year in hepPh/hepTh dataset.

Fig. 5. Precision versus recall of edges (Enp) in node prediction module.

Table 3
Precision and recall of Elp.

Predictor hepTh hepPh

Precision Recall Precision Recall

Adamic/Adar 0.3443 0.0026 0.8584 0.0038
Common Neighbors 0.3443 0.0026 0.8584 0.0038
Jaccard’s Coefficient 0.3443 0.0026 0.8584 0.0038
Katz 0.5721 0.1959 0.7148 0.3624
Preferential Attachment 0.5721 0.1959 0.7148 0.3624
Rooted PageRank 0.5721 0.1959 0.7148 0.3624
Simrank 0.0000 0.0000 0.0000 0.0000

Fig. 6. F-score of 4 methods with different community detectors in hepTh/hepPh
dataset for 1 year prediction.
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have little effect on the overall performance of the model com-
pared to the specific structures of the given network.

Using the community matching algorithm introduced in Sec-
tion 4.2, Fig. 6 compares the F-score of following-year predictions
made by the nlc-method, the nc-method, the cnlc-method, and the
c-method with different combinations of community detection
methods, datasets, and years as an X-axis and F-score as a Y-axis.
The results of four methods are grouped at each column. The ran-
dom predictor is not able to detect any communities in any of the
test sets and hence is not presented.

The c-method outperforms other methods in every test. The c-
method uses the current community structure to predict future
communities, and this result proves that the communities do not
change much in one year. The nc-method is the second best predic-
tor in most of the cases; methods with more modules resulted in
worse performance. It is also worth noting that the performance
increases as the graph grows in each dataset, while the smaller
hepTh dataset returns a higher performance compared to the lar-
ger hepPh dataset.
Fig. 7 illustrates how much the F-score decreases when predic-
tions are made for graphs five years in the future, calculated by
Fscore(t + 5)/Fscore(t + 1). Fig. 7 shows that the performance drop
ratio of the c-method over five years depends on which dataset is
used; this supports an earlier statement that the community pre-
dictors have relatively less effect on the performance change. The
X-axis shows the combination of community detection algorithms
and datasets grouped by four methods presented in this paper. The
Y-axis represents the F-score ratio of predictions 5 years in the
future against predictions for the following year.

The c-method assumes that the community structure does not
change over time. Analyzing the c-method in Fig. 7 suggests that
the community structure changes more on the hepTh dataset.
The Louvain-best algorithm in the hepTh dataset returned less
than 5% of the initial prediction with all methods but the c-method,
which returned over 20%. This suggests that the growth in hepTh
dataset is more random compared to hepPh and the community
structure found by the Louvain-best algorithm in hepTh dataset
is prone to random alteration. Methods other than the c-method
change the community structure by adding nodes and edges and
are unable to effectively mimic the growth of such graphs without
introducing random factors large enough to alter the community
structure of the graph.

While the absolute F-score on the Louvain-smallest algorithm
in Fig. 6 was generally lower than that of Louvain-best algorithm,
it is shown to have a lower performance drop over the years. The
nc-method and the cnlc-method are able to retain 60% of original
prediction performance after 5 years in hepPh dataset with the
Louvain-smallest algorithm. This result is opposite that of the Lou-
vain-best algorithm with hepTh; the c-method shows the largest
performance drop in this combination. This shows that the nc-
method and the cnlc-method work better as the size of a graph



Fig. 7. F-score ratio when prediction at t + 5 is compared against prediction at t + 1,
with threshold = 0.5

Table 4
Community matching scheme.

c1 c2 output

Existing nodes c1,old c2,old simold(c1, c2)
New nodes c1,new c2,new simnew(c1, c2)

Fig. 8. F-score of the nlc-method with different wold and wnew values.
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grows and as a graph is more fine-grained into more communities,
each with smaller sizes.

In short, the c-method can be used to predict the community
structure in the near future. In the larger graph with fine-grained
communities, the nc-method (lower computational complexity)
or the cnlc-method (better result with wider range of input) can
be used to predict further into the future.
Fig. 9. F-score of newly emerged and disbanded communities in the nc/nlc-method
with w1 = 0.0 and w2 = 1.0.
4.3.4. Identifying emerging and disbanding communities
The variance of the resulting performance for emerging/dis-

banding communities in the citation networks is also tested. The
nc-method and the nlc-method are analyzed with preferential-
attachment, which is used in the link prediction module. The Lou-
vain-best algorithm is used in the community detection module,
and months starting March 1996 from the hepTh dataset are used
as time steps.

Membership nodes in two compared communities c1 and c2 are
first divided into two subsets, each containing (1) a series of nodes
that were present before any prediction is made cold and (2) the
newly added nodes cnew. As shown in Table 4, simold(c1, c2) and
simnew(c1, c2) are calculated from respective node subsets from
which sim(c1, c2) is derived. simold(c1, c2) and simnew(c1, c2) are
each weighted with weight constant wold and wnew respectively.
The resulting formula is wold � simold(c1, c2) + wnew � simnew(c1, c2)
= sim(c1, c2), where wnew + wold = 1 so that 0 6 sim(c1, c2) 6 1.

simold(c1, c2) is calculated in the same way explained in Sec-
tion 4.2, replacing c1 and c2 with c1,old and c2,old. simnew(c1, c2) uses
a different approach, since it is dealing with a set of new nodes
with random identifiers; comparing nodes with their identifiers
is unfavorable. Only the number of nodes in the community is con-
sidered, and simnew(c1, c2) is therefore calculated as min(c1,new,
c2,new)/max(c1,new, c2,new) with exceptional case where simnew(c1,
c2) is set to 1 if max(c1,new, c2,new) is 0.

Fig. 8 shows the result of the nlc-method with the different
weight combination of the new community detection algorithm
having wold = 0 and wnew = 1 returning the best result.

At each timestep, any newly emerged and disbanded communi-
ties are identified. Fig. 9 shows that both methods in question (the
nc-method and the nlc-method) show similar performance in
detecting emerging communities, with the nlc-method starting to
outperform the nc-method after about the 45th iteration. This result
suggests that the link prediction module used in the nlc-method is
better than the modified node prediction module used in the nc-
method; extrapolating the given citation network with more accu-
rate network properties such as average node degrees and
distance.

Fig. 9 also shows the F-score of communities found to be formed
and disbanded. The disbanded result is very high in either method,
increasing as the detection goes further. This shows that it is easier
to detect communities that will be disbanded in the future than to
detect communities that will be formed in the future. At the same
time, this result also points to a limitation of this experiment; each
community is not tracked throughout the experiment but rather is
individually identified at each timestep. With network structure
continuously distorting at each timestep, it is possible that the
communities identified do not reflect the past changes in their
structure, influencing the output result.
4.3.5. Community labeling
A sample community labeling test is done to determine the pos-

sibility of community labeling with low computational cost. Three
methods are compared: Keyword Extraction, Concept Tagging, and
TF/IDF as the basic baseline. Table 5 presents the top four relevant
labels representing five randomly picked communities extracted
by each method. Each line in a group is related to the same com-
munity. TF/IDF treats each keyword the same, and hence most of
the returned keywords do not hold specific meaning in the com-
munity (‘Note’, ‘Their’, ‘Master’ and ‘Form’ are such examples).
On the other hand, Keyword Extraction and Concept Tagging show
better results, returning more domain-specific terms such as



Table 5
Sample labels extracted using TF/IDF, Concept Tagging, and Keyword Extraction.

TF/IDF Uncertainties Dependence Note Background
R-Matrix Cal Hierarchy Their
Higher Correlators Genus Matrix
Equation Master Phases Unitarity
Nonlinear General Scalar–Tensor Form

Keyword Extraction Black Hole Theory String Theory Non-Fluctuating Modes
KP Hierarchy Hamiltonian Structures System R-Matrix Formulation KP Hierarchies
Model Matrix Model External Field Complex Matrix Model
Theory String Matrix Model String Theory
Scalar–Tensor Quantum Gravity Quantum Gauge Theory Nonlinear Gauge Theory

Concept Tagging String Theory Statistical Mechanics Fundamental Physics Concepts Entropy
Structure Group Standard Model Quantum Field Theory
Mathematics Derivative Generating Function Complex Number
Algebraic Structure Geometry Representation Theory Lie Algebra
String Theory General Relativity Quantum Field Theory Vector Space
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‘Fundamental Physics Concepts’, ‘Representation Theory’, ‘KP Hier-
archies’, and ‘Scalar–Tensor Quantum Gravity’.

Representing a series of labeled communities in such format
becomes very text intensive as the number of communities
increases, and a number of techniques have been tried to visualize
the labeled communities. 15 false positive communities found at
the 10th timestep (December 1992) are used as a sample data.
Figs. 10 and 11 show the bar representation of labels extracted by
the Keyword Extraction and Concept Tagging methods. Each figure
shows every label found among 15 communities in a single row,
and labels relevant to the community are colored according to their
relevance. Fig. 11 with 53 columns (concepts) shows that few con-
cepts appear through many communities. Considering the data as
the false-positive result, such concepts are likely to be the common
reason why they were falsely identified. Fig. 10 shows less of such a
pattern but is more difficult for a person to comprehend, with about
double the number of columns (103 keywords).

A star diagram visualization method is shown in Fig. 12, using
top five labels from each community. Because the communities
do not share the same labels to represent themselves, each ‘star’
is visible at 5 different slots of a total of 36 slots. It is possible to
differentiate communities with different coloring, but more com-
prehensive techniques such as changing the label ordering can fur-
ther improve the outcome. This is left for future research.
5. Discussion

The experiments showed that citation networks can be used to
successfully predict communities up to 5 years into the future. The
contribution of the prediction methods to the success of the results
Fig. 10. Bar representation of labels of false-positiv
can be analyzed according to each building block. The node predic-
tion method shows promising results.

The experiments showed that the performance of the methods
differs considerably based on the prediction time span. Short term
predictions for a single year should use clustering (the c-method).
The advantage of this method can be attributed to the communi-
ties’ slow pace of change in research that is represented by the
change in the citation networks. However, as the prediction span
increases, the performance of the per-community method (the
clnc-method) increases much faster than that of the clustering
method. Since the pace of new research topics varies between
research fields, the assumption is that for slow changing fields with
short prediction spans the c-method would be more useful while
for faster changing fields and longer prediction spans the per-com-
munity method would be better.

The results indicated a limitation of the method: when there is a
sudden extreme change in the number of nodes appearing in one
year, then there is a gap between the predicted results and the true
results. The experiments show that after one year the gap is min-
imized. One possible way to minimize the error in such cases is
to consider the average change in multiple years in the past.

Although the node prediction module achieves high perfor-
mance, the link prediction achieves lower performance. Use of dif-
ferent link prediction and community detection algorithms could
increase the overall performance of community prediction. One
possible solution for community detection is evolutionary cluster-
ing [13,24], which takes temporal consistency of the communities
into account.

Analysis of Fig. 7 implies that all the methods work better on a
more stable network. Methods introduced in this paper should be
tested on more active citation networks where community
e results with the Keyword Extraction method.



Fig. 11. Bar representation of labels of false-positive results with the Concept Tagging method.

Fig. 12. Radar graph of labels of false-positive results.
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structure frequently changes. Suggestions for additional work
include the analysis of whether the break-even point for the best
community detection method depends directly on the community
size. The labeling is based on Keyword Extraction from existing
papers. However, some of the nodes represent futuristic papers
that have no attributed keywords. The labeling should take into
consideration the number of existing paper nodes versus predicted
nodes. It is possible that this problem can be alleviated by utilizing
narrative-based NLP instead of the semantic NLP techniques [11].
The processing time of the algorithm is dependent on the number
of citations and links. Of the two datasets, one was approximately
double the size of the other, and therefore the performance time
was approximately twice as long in all methods, thus indicating
a linear complexity. The time required to analyze the biggest data
set using the method that requires the longest processing time was
approximately 10 min.

6. Conclusion

The paper presents a model for analyzing future communities in
a citation network. The model includes a heuristic node prediction
method, link prediction methods, and community detection meth-
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ods, which are combined in various ways. Four community analysis
methods are proposed. The analysis methods in the model show
promising results in analyzing the possible communities in the
future. The analysis time span was found to be a considerable factor
in the performance of the community analysis methods. The track-
ing of community propagation shows good results, and the method
can be used to predict the topic propagation in research fields with
added labeling features, which have practical applications such as
letting businesses invest funds in promising research areas.

Directions of future research include addressing datasets in dif-
ferent fields and creating a measurement for the performance of
each method derived from the characteristics of the network such
as size, centrality, and consistency. Another possible direction is to
investigate the break-even point for community size versus differ-
ent combinations of analysis methods.
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