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Abstract
If the market has an invisible hand, does knowledge creation and representation have an

“invisible brain”?While knowledge is viewed as a product of neuron activity in the brain, can

we identify knowledge that is outside the brain but reflects the activity of neurons in the

brain? This work suggests that the patterns of neuron activity in the brain can be seen in the

representation of knowledge-related activity. Here we show that the neuron activity mecha-

nism seems to represent much of the knowledge learned in the past decades based on pub-

lished articles, in what can be viewed as an “invisible brain” or collective hidden neural

networks. Similar results appear when analyzing knowledge activity in patents. Our work

also tries to characterize knowledge increase as neuron network activity growth. The results

propose that knowledge-related activity can be seen outside of the neuron activity mecha-

nism. Consequently, knowledge might exist as an independent mechanism.

Introduction
Neuron activity has been researched extensively in the area of knowledge representation. Previ-
ous work suggested that there is another layer between neuron activity and knowledge repre-
sentation in brain activity [1, 2]. In economics, the invisible hand of the market is a metaphor
to describe the self-regulating behavior of the marketplace [3]. Our work shows that the neu-
ron-like behavior appears in knowledge systems outside of the brain, therefore suggesting that
knowledge can be represented directly by patterns of neuron activity as an “invisible brain”.
Thus we suggest that biological neuron behaviors are a good tool for the representation of
knowledge activity and might appear in multiple areas of life.

The biological neuron model describes the mathematical neuron spiking process. Neurons
are viewed as cells specialized for communication with other neurons or cell types. Biological
neuron communication is performed through synapses, which are electrical or electrochemical
signal junctions. We conceptualize knowledge in research as spiking neuron communication
and compare the research publication activity to real neuron behavior.

The method is based on identifying similarity between brain neuron behavior and research
publication activity over time, which can be considered a representation of knowledge. We
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analyze 9,799,239 research publications as well as patents in different domains according to
topics such as anaphylaxis, jet turbine, and game theory and identify the research areas over 45
years. We extract the communication activity between different research topics according to
keyword frequency correlation appearing in published articles. Then we map all research topic
activity to keyword frequency correlation and compare the resulting correlation to biological
neuron activity simulations. The communication is monitored over time for spiking activity as
in collective hidden neural networks. Similar communication in patents is analyzed to check
whether the knowledge activity appears in other areas.

Knowledge and Brain
The topic of knowledge and brain activity has been researched ever since Plato stated that
“knowledge is perception” [4] and speculated that knowledge is contained in the brain [5]. The
hypothesis that the functional unit of the brain is the neuron was formed based on the develop-
ment of a staining procedure by Golgi that used silver chromate salt to reveal the intricate
structures of a single neuron. Cajal’s use of the technique led to the formation of the neuron
doctrine, the hypothesis that the functional unit of the brain is the neuron [6].

Currently the neuron doctrine views the brain as a network [7]. There are many structure-
function relationships in a brain. One can view a set of regions as a set of nodes while a rela-
tionship between two regions is mapped to a link between corresponding nodes. How we can
determine each region is an issue which corresponds to building nodes in a network.

Previous work in graph theory employed a clustering coefficient as a measure of the degree
to which nodes in a graph tend to cluster together. Evidence indicated that in most real-world
networks, and especially in social networks, nodes tend to form tightly knit groups marked by
a relatively high density of ties which tends to be greater than the average probability of a tie
randomly established between two nodes [8, 9].

The structure of a dynamic network, or evolving network, can alter as time passes. In some
cases, we separate a period of time into several time slots, and we can view a dynamic network
as a sequence of networks, where each network represents a snapshot of the dynamic network
at each time slot [10, 11].

For a given complex system, there are actuators of the system and there are interactions,
interconnections, or relationships among them. Examples include social networks [9], collabo-
ration networks [12], the Internet [13], the World Wide Web [14], and biological networks
[15]. Many complex networks for real-world systems have the same properties, such as small
world phenomena and power-law distribution; two nodes in a network are likely connected
through a short path (a sequence of nodes of a network), and the degree (the number of neigh-
bors of a node) follows a power-law distribution so that there exist some hub nodes which have
many more connections than others.

Many methods have been developed for the analysis of homogeneous networks. But the
analysis of heterogeneous networks is not simple, for links across entities can have several
types. The Internet of Things is an example of a heterogeneous network [16]. The approach
uses a variety of things or objects which can be represented as nodes. The nodes can be con-
nected by their relations. Another approach is the network of networks, which can be viewed
as a system of coupled networks, where the networks have different nodes or multilayer net-
works and networks can be layered when each layer contains the same type of edges in the
presence of multiple types of edges [17].

Another problem is how to build a network for a given complex system. The problem is
closely related to the problem of graph drawing or network visualization [18], where there is a
suitable node-link diagram that describes a network. However, the graph drawing problem
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usually assumes that a set of nodes and a set of edges are given together and tries to find a set of
positions of the nodes in a space. Other work addressed the problem of building a complex sys-
tem by merging one network that contains the link structure and another network that con-
tains the content information [19].

Evolutionary clustering deals with the problem of processing time stamped data to produce
a sequence of clustering for each time step of the data arriving to the detecting system [20]. In
analyzing dynamic networks such as social networks, node characteristics and behavior are
often correlated with influence and homophily [21].

Optical [22, 23, 24] and electrophysiological [25, 26] techniques exist for recording activity
from many neurons. The field of recording a large number of neurons is still in its infancy.
Current techniques allow recording only a small number of neurons for imaging. The current
techniques are limited compared to the number of neurons existing in the brain of most ani-
mals analyzed today. The analysis of only a small number of neurons is limited in the isolation
of the boundary of neural network behavior [27, 28].

To analyze neuron network connectivity behavior, the electrical activity between the neu-
rons can be sampled. When sampling neurons, both the spatial resolution and the time resolu-
tion should be considered. Previous research has sampled neuron activity extending from
milliseconds to months. Regarding the neuron network area covered, the area sampled ranges
from a small number of microns to centimeters [29, 30].

Although it is known that neurons are connected by a network structure, how this network
works and achieves the results attributed to the brain as a whole is far from being clear. The
analysis of the change of fluorescence can assist in the understanding of the activity of neural
events and the neural network spiking connectivity. Neural reconstruction can facilitate view-
ing how large networks of neurons spike and how different spiking areas in the network are
associated. The idea behind it is that when the neural network spiking is over-excitable one
neuron can trigger a large number of neurons which are not directly connected to it [31]. Previ-
ous work has also analyzed neuron spiking relative to background activity [32, 33].

The idea that the connectivity of a neuron system can be generalized across systems in differ-
ent animals based on existing knowledge of small circuits has been previously suggested [34].
Similarly, previous work suggested clustering knowledge according to passing messages by iden-
tifying a subset of processing sensory signal examples and detecting patterns in the data [35].

In the past Hopfield [36] suggested to build collective systems having a large number of sim-
ple elements similar in their activity to neurons used by biological organisms. The idea was
expanded as a conceptual framework to understand the computational processing in the neural
circuit model, where circuits consist of neurons organized in networks with effective synaptic
connections [37].

The organization of large populations of interacting elements has been researched exten-
sively in areas of physical, biological, chemical, and social systems. The problem of organiza-
tion synchronization included the approach of modeling each member of the population as a
phase oscillator [38]. Spiking neural systems are viewed as a class of distributed parallel com-
puting devices motivated by the way neurons communicate by means of spikes. Asynchronous
systems are non-synchronized systems, where the use of spiking rules is not mandatory [39].

One method used for simulating a large number of neurons was based on video viewing of
neuron activity [40]. The method was based on taking snapshots of neuron networks through
optical imaging. The video acquired from the time series snapshots allowed the measurement
of large networks of neurons. Based on the neuron activity in the video, the structure of the
neuron network could be reconstructed. The snapshots of the neuron calcium inflow assist in
estimating the resulting actions of the individual spiking neurons. The implemented method
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analyzed the changing fluorescence values, which measured reactions between fluorescent mol-
ecules and calcium ions.

The method used here is based on a simulation that aims at inferring the connectivity of
neuron networks from calcium fluorescence imaging of their network signals. The simulation
method used [41] is based on analyzing cause and effect of neuron behavior over time. The
problem is represented as a graph with nodes, neurons, and edges connecting to other nodes,
synapses. The graph is directed where all edges are from one node to another. Therefore, edges
can be viewed as either excitatory or inhibitory. The neurons are arranged in a two-dimension
“square petri dish”. The coordinate location of the neurons is predetermined and used for both
data sets including the neurons and the research activity. The simulation also includes light
scattering effects due to overlapping signals.

The data simulation [41] used is based on real neuron behavior. The neuron network struc-
ture uses topology connectivity models. The simulation is based on neuron distance and esti-
mates neuron clustering based on real biological data. The method incorporates NEST
simulator models [42, 43] for leaky integrate-and-fire models. These models provide a more
accurate simulation of experimentally observed neuron spiking recordings. The fluorescence is
modeled using time averaging of calcium fluorescence spiking and light scattering. The fluores-
cence emitted from neurons is compared to the “fluorescence” emitted from knowledge based
on the analysis of research publications and patents to view the activity of the “invisible brain”.

Research Publication Activity
Research publication activity is analyzed by the number of publications on each topic (node)
and correlation between topics (node connectivity or “synapses”). The activity on a specific
topic can be viewed by the number of article or patent publications on a specific topic analyzed
by keyword occurrences. The keyword set used to define each publication can be supplied by
the author, the publication journal, or patent classifications based on a predefined set of key-
words or extracted from the title or the abstract. The basic time frame for evaluating topic pub-
lication activity was set at one year. Smaller time frames were analyzed but seemed less
significant due to the periodic timeline of research activity.

Evaluating connectivity, or communication, between research topics is based on identifying
first the related topics. This is done by classifying multiple topics which appear in the same
research article or patent, as identified by the selected keywords. Once two topics are marked
as related, we analyze the degree of correlation of the topics’ activity over the whole time period
viewed. Then we can select the top n highly correlated nodes to be compared to n simulated
connected brain neurons and observe the “fluorescence” created by both activities.

PubMed andWeb of Science provide access to multiple databases of references and
abstracts on life sciences and biomedical topics. The United States Patent and Trademark
Office provides information about all patents and intellectual property in the US. To analyze
research publication activity, articles and patents were extracted from all three data sources
according to general topic keywords such as anaphylaxis, Doppler effect, yellow fever, and
diphtheria.

The research topic analysis method includes the following steps outlined in Fig 1:

• Extract the publication year and list of specific topic keywords associated with each article or
patent.

• Count the number of appearances per year of each keyword.

• Identify the relation between keywords based on multiple keywords appearing in a single
article or patent.
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• Calculate correlations changing over time between related keywords.

• Image the changing correlations between research topics as fluorescence signals.

• Compare the fluorescence signals emitted over time between neuron activity and research
publication activity.

Neuron versus Research Activity
Analysis was performed on 9,799,239 research articles and on patents from 24 different topics
in medicine and 9 topics related to physics and game theory in over 45 years. The data topic
description is displayed in Table 1. Data sets from PubMed, Web of Science (WoS), and United
States Patent and Trademark Office (USPTO) were used in the experiments. The number of
keywords which can be used ranges from a single term per article or patent to all possible
words in the abstract. Two keyword search field tags were used from each data source. Web of
Science has WC (Web of Science Category) and SC (Subject Category). PubMed has MH
(MeSH—Medical Subject Headings Terms) and OT (Other Term). USPTO has CPC (Cooper-
ative Patent Classifications) and ICL (International Classification). The total number of article
or patent records used ranged from 182 (quantum electro dynamics) to 471,641 (diabetes).
Except for topics such as epidemiology, microbiology, oncology, and genetics, which were too
big, the input data can be found in the Supporting Information [S1–S9 Files]. Preprocessing
was performed to remove duplications. The results were organized by descending correlation.

Simulated Neuron Activity
The simulated neuron data is based on a realistic simulator of real neurons and a model of cal-
cium fluorescence recording. The data used in the simulation was based on the ChaLearn Con-
nectomics Challenges (http://connectomics.chalearn.org/). The data used was generated by a
simulator described in [41] and detailed in the Methods Section. The motivation behind the
simulation is to be able to isolate a predetermined number of neurons and allow them to inter-
act in a “square petri dish”. While creating the option of isolating neurons and supplying the

Fig 1. Extracting Florescence from Research Articles and Neurons.

doi:10.1371/journal.pone.0158590.g001
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Table 1. Data of 24 medicine and 9 physics topics analyzed.

Topic (Medicine) Records Data Source

Irritable Bowel Syndrome 12,768 WoS

8,893 PubMed

In Vitro Fertilization 29,005 WoS

36,939 PubMed

Angina 57,216 Pubmed

Nephrology 80,920 Pubmed

Hematology 124,883 PubMed

Ophthalmology 142,924 Pubmed

Hepatitis 189,561 Pubmed

Orthopedic 191,934 Pubmed

Infectious disease 163,816 Pubmed

Diphtheria 8,680 WoS

12,099 PubMed

12,717 USPTO

Gastritis 16,081 WoS

25,045 PubMed

Epidemiology 1,743,446 Pubmed

Hypoglycemia 34,033 Pubmed

Typhus 1,932 WoS

2,836 PubMed

Poliomyelitis 3,999 WoS

9,705 PubMed

Anaphylaxis 12,353 WoS

19,299 PubMed

Microbiology 1,044,080 Pubmed

Oncology 2,037,722 Pubmed

Diabetes 471,641 Pubmed

Genetics 2,821,631 Pubmed

Obesity 206,555 Pubmed

Obstetrics 203,450 Pubmed

Yellow Fever 4,122 WoS

3,824 PubMed

Topic (Physics) Records Data Source

Quantum Electro Dynamics 182 WoS

Antimatter 1,107 WoS

Jet Turbine 1,471 WoS

Bubble Chamber 1,996 WoS

587 USPTO

Photoelectric Effect 2,332 WoS

Uncertainty Principle 8,676 WoS

Atomic Collision 10,356 WoS

Game Theory 13,902 WoS

702 USPTO

Doppler Effect 23,819 WoS

doi:10.1371/journal.pone.0158590.t001
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correct input is difficult due their connectivity to other neurons, the simulation allows tools to
provide a controlled environment closely resembling real neurons. The simulation is based on
a network of neurons interacting with one another. Each neuron spike is based on input
received from nearby connected neurons. In the case of real neuron simulation, the spike or fir-
ing of a neuron depends on the chemical / electrical signal received from nearby connected
neurons. In the case of research activity, the signal is based on information transfer between
topics of research representing a neuron node. The visual aspects of the simulation are based
on imaging the calcium florescence emitted by the interaction between neurons. The simula-
tion is built on spiking based on interaction between neurons instead of separate neurons spik-
ing at random times independently. The simulation also considers light effects based on
multiple nearby neurons or light simulation based on multiple emitting sources.

The data used for the neuron activity simulation included files from the ChaLearn Connec-
tomics Challenges (https://www.kaggle.com/c/connectomics/data). Two types of files were
used. The first type of files describes the neural fluorescence activity. These files represent a
time series of each neuron activity every 20ms. The neurons are ordered by rows and columns.
The second type of files includes a list of X and Y position of each neuron in the “square petri
dish”. The simulation represents neurons in an area of 1mm2. The files used for simulation
included small networks of 100 neurons and normal networks of 1,000 neurons. In addition, a
high rate of spiking neurons and a normal rate of spiking neurons with low signal noise were
also analyzed.

Research Topic Activity
For the analysis of research records, the time series activity used was every year. The compari-
son was made using the same number of top 100 or 1,000 keywords in each of the topics. The
location of each of the keywords was based on the neuron positions in the “square petri dish”
and was randomly picked from the existing set of neuron positions appearing in the file.

To extract publications in medicine and physics, each of the topics appearing in Table 1 was
used in the Web of Science, PubMed, or USPTO. All of the records were used for each topic.
For each topic all possible keywords describing the publications were counted each year. For
every pair of keywords that appeared at least once in the same publication, the correlation was
analyzed over the whole time period. The keywords were organized in descending order of cor-
relation followed by number of appearances. To compare research topic activity to neuron sim-
ulation, the top 100 or 1000 ranking keyword correlations were used. The simulated neuron
activity data and the research topic activity data can be found in the Supporting Information
[S1–S9 Files].

Image Comparison
Earth Mover's Distance (EMD) is used for image similarity comparison. EMD is a true metric
if the ground distance is metric and if the total weights of two signatures are equal. This allows
use of image spaces with a metric structure. EMDmatches perceptual similarity better than
other measures, when the ground distance is perceptually meaningful. This was shown by [44]
for color- and texture-based image retrieval.

Results
Fig 2 displays neuron activity change versus research activity on the topic of anaphylaxis. In
this case, 100 neuron activity nodes were selected and compared to 100 high ranking correlated
activity topics. The locations of the nodes of the research activity topics were randomly selected
from the set of existing locations of the neuron nodes. The time line compares peaks in activity
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Fig 2. Neuron Activity vs. Research Activity on Anaphylaxis (100 nodes).

doi:10.1371/journal.pone.0158590.g002
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and the time scale is obviously not identical since the neuron activity is sampled at 20ms inter-
vals and the publication activity in years. The neurons span a 1mm2 square area. The activity
was calibrated to show similar color shades for maximum and minimum activity. The EMD
indicates the size of difference between each of the two images.

When the activity peaks, the similarity between the neuron activity and the research activity
becomes visible. The similarity extends to both location and intensity of a specific node area.
Prior to the peak, the activity seems considerably different and the neurons are not very active.
The peak appears and disappears suddenly within a few seconds of neuron brain activity and
similarly within a few years of publication. The assumption of continued similarity of activity
in the future makes future extrapolations possible. Analysis of the peak activity and view of the
next “frame” of the movie in neuron activity might provide some information on the future
decrease in activity in a research topic such as anaphylaxis.

Fig 3 presents a more detailed perspective using 1000 nodes of neuron activity versus
research activity on the topic of in vitro fertilization. Comparison of the results shows again
that, as the activity increases, the similarity between the communication of the nodes becomes
more visible. However, assuming the activity similarity will continue, the peak of research in
the area of in vitro fertilization has not yet been achieved, as seen in the last neuron activity
frame.

Fig 4(a) compares medical-based research activity with physics research activity over time.
The medical domain includes five randomly selected topics: anaphylaxis, irritable bowel syn-
drome, diphtheria, yellow fever, and gastritis. Similarly the physics domain includes four topics:
bubble chamber, jet turbine, uncertainty principle, and Doppler effect. An additional topic of
game theory was added to represent a topic that spreads over multiple domains, including eco-
nomics, political science, biology, and computer science. The Y-axis displays the EMD value
based on comparing each image activity to a baseline image representing no activity, where
higher values represent more research activity, while the X-axis represents the change in years
from 1970.

The results show similarity between the activity of the different domains. Some topics repre-
sent a slow decrease and then fast growing research activity in areas such as Doppler effect, yel-
low fever, and diphtheria. Other topics show increased interest over time, such as irritable
bowel syndrome and uncertainty principle. Game theory, representing a collection of research
disciplines, is portrayed as a more stable research activity. Overall, no difference between the
research domain activities and research domain areas is visible.

Fig 4(b) compares using EMD on two data sources, Web of Science and PubMed, to no
activity baseline image based on the previous five medical topics. The sudden peaks in topics
such as anaphylaxis and diphtheria can be attributed to the response to concerns about vaccine
safety at the end of the 1980s. The Web of Science data source shows much more research
activity than PubMed although topics are related to medical terms. This could be explained by
the number of terms, or keywords, associated with each article. Web of Science has consider-
ably fewer terms associated with each article, making each term more unique and making it
easier to identify increase in specific research activity. This shows that different data sets of
“similar knowledge” can be interpreted differently.

Fig 5 presents activity of anaphylaxis, irritable bowel syndrome, bubble chamber, diphtheria,
and game theory research topics on a similar timeline. The small empty frames represent the
time gap between the research activities analyzed over a period of 45 years. Although all research
topics seem to be currently active, diphtheria displays decreased researched activity compared to
previous years. Game theory seems to display a comeback from the early 70s, when in the 80s
and 90s it seems to have “departed” from research activity. Many of the topics display a cycle of
recurring peaking sudden research activity which also resembles the neuron activity.
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Fig 3. Neuron Activity vs. Research Activity on In Vitro Fertilization (1000 nodes).

doi:10.1371/journal.pone.0158590.g003
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Patents were analyzed to examine whether knowledge activity similar to neuron behavior
also appears in other areas. The results show that knowledge processing activity similar to neu-
ron behavior can be seen in patents as well as in research publications. Fig 6 displays similarity
between article research activity and patent activity on the topics of bubble chamber and game
theory. The activity of the two topics is presented in two timelines. The results show that for a
long duration there is no activity in patents while the article research publication is active. In
both topics there appears a small fluctuation in the patents, shortly followed by a sharp peak of
activity in the patents, which becomes more active than the article research activity in that time
duration.

The results show that neuron-like knowledge activity is not limited only to the area of article
research and can be viewed also in patents. The research activity based on articles can be

Fig 4. (a) Earth Moving Distance in the Domains of Medicine and Physics (b) Earth Moving Distance in Different Data Sets.

doi:10.1371/journal.pone.0158590.g004
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Fig 5. Activity of Different Topics on a Similar Timeline.

doi:10.1371/journal.pone.0158590.g005
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viewed as representing expanding knowledge, while the patents activity can be viewed as repre-
senting business activity or possibility of expanding economic activity in the topic field. One
perspective is viewing the activity peak as knowledge transfer from research to patents for a
short duration. Another perspective is that in comparison to neuron activity the patents also

Fig 6. Research versus Patent Activity on a Similar Timeline.

doi:10.1371/journal.pone.0158590.g006
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display a sudden short peak or excitation of activity due to an external stimulator, the article
research activity. In both perspectives the result is similar to neuron activity—long durations of
very little to no activity followed by short durations of extreme activity.

Discussion
The goal of the paper is to show similarity between the knowledge activities. Based on this simi-
larity it might be possible to view knowledge as independent of neurons. The minimum short
term similarity presented is a year. Longer similarity, and possible knowledge explosion, can be
analyzed based on rising activities detected in previous cases of similarity between knowledge
publication topic activity and neuron activity. Pairs of similarities can be generated and stored
based on a large number of cases. When a new topic is analyzed, it can be compared to previ-
ously known pairs and the case with highest similarity can be identified. Furthermore, groups
of topics can be analyzed together to check if a combination of them yields a higher chance of
knowledge explosion.

The method is used based on past knowledge activities. However, full cycles of neuron activ-
ities can be analyzed and compared showing peaks and lower points of the topic activity. New
keywords are hard to simulate since the content of the possible label of keywords is harder to
extract. However, previous work suggested that analyzing papers by clusters of topics can assist
in identifying possible labels of new clusters [45].

Words are currently the most common method of storing knowledge. The keywords ana-
lyzed in this work can be viewed as concepts representing the main issues researched in each of
the topics. Other tools of storing knowledge can be considered such as voice, music, or movies.
In these cases the relations between each of the instances would have to be defined.

We show knowledge-related activity by observing similarity in behavior of brain neurons
and research publication activity. This similarity is viewed as peaks in communication between
neuron cells or alternatively communication between research topic areas. The results may
allow us to examine knowledge according to neuron behavior patterns and to infer future
knowledge behavior according to these patterns in different fields such as research, social
behavior, or natural biological systems. In addition, the behavior of knowledge systems may
allow us to infer neuron behavior.

Methods

Publication Correlation Analysis
To analyze correlation between publication topics over time, we employed the Pearson prod-
uct-moment correlation coefficient. The Pearson correlation analyzes dependence between
topic nodes, when dependence can be viewed as activity between neurons. The correlation is
obtained by dividing the covariance of the two variables by the product of their standard
deviation.

The correlation coefficient ρX,Y between two random variables X and Y with expected
value μX and μY and standard deviation σX and σY is defined as:

rX;Y ¼ corrðX;YÞ ¼ covðX;YÞ
sXsY

¼ E½ðX� mXÞðY� mYÞ�
sXsY

where E is the expected value operator, cov means covariance, and corr for the correlation coef-
ficient. The correlation coefficient is symmetric.

The Pearson correlation reaches a maximum of 1 in the case of a perfect direct (increasing)
linear relationship (correlation) and a minimum of −1 in the case of a perfect decreasing
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(inverse) linear relationship (anticorrelation) [46]. All other values between −1 and 1 indicate
the linear dependence degree between the variables. The closer the values are to 0, the less cor-
related the variables are, which can be viewed as having less relationship between them. A Pear-
son correlation coefficient of 0 means the variables are totally independent.

For a given series of n measured variables of X and Y, xi and yi where i = 1, 2, . . ., n, the sam-
ple correlation coefficient can represent the population Pearson correlation r between X and Y.

The sample correlation coefficient is defined as:

rxy ¼

Xn

i¼1
ðxi � �xÞðyi � �yÞ

ðn� 1ÞSxSy
¼

Xn

i¼1
ðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðxi � �xÞ2ðyi � �yÞ2

r

where x and y are the sample means of X and Y, and Sx and Sy are the standard deviations of X
and Y.

Simulation of Neural Network Activity
The changing activity of the neuron networks was generated using the NEST simulator [42, 43].

The neurons simulation was modeled as leaky integrate-and-fire neurons. The membrane
potential Vi(t) of a neuron i defined by:

tm
dViðtÞ
dt

¼ �Vi þ
IsynðtÞ
gl

where g1 = 50pS is the leak conductance and τm = 20ms is the membrane time-constant. The
time-dependent input current that derives from recurrent synaptic connections is defined by Isyn.

The membrane potential was set to decrease exponentially and remain at zero when there
are no synaptic inputs. Inputs from other neurons increase the membrane potential stimula-
tion. When the membrane potential reaches a threshold of Vthr = 20mV an action potential is
obtained, defined as neuron firing or neuron spiking. The spiking is followed by resetting the
membrane voltage to zero for a time period of tref = 2ms.

The result of the membrane potential activates post-synaptic neurons connected to the spik-
ing neuron. The total synaptic currents are defined by

dIsynðtÞ
dt

¼ � Isyn
ts

þ aint

XN
j¼1

X
k

AjiEjiðtÞdðt � tkj � tdÞ þ aext
X

l

dðt � tlext;i � tdÞ

where A is the adjacency matrix, and τs = 2ms represents a synaptic time constant. The out-
come is described as excitatory post-synaptic potentials (EPSPs) and has a standard difference-
of-exponentials time-course [47].

There is a limited amount of synaptic resources, and therefore neuron connection with syn-
apses includes short term depression [48]. To simulate the conditions where the inhibitory
transmission is fully blocked, fully excitatory networks were created. For each reoccurring
input of given neuron i, the set ftkj g represents times of spikes created by the presynaptic neu-

ron j, where td represents a delay of td = 2ms. The synaptic weights of the recurrent connections
are defined as homogeneous by αint. The recurrent time dependent strength αintEji(t) is defined
by using the network firing history as:

dEjiðtÞ
dt

¼ � Eji

tinact
þ URji

X
k

dðt � tkj Þ
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dRjiðtÞ
dt

¼ � 1

trec
ð1� Rji � EjiÞ

where Eji(t) is the portion of neuron transmitting in what is viewed as the “effective state”, simi-
larly Rji(t) represents the “recovered state”, while Iji(t) = 1 − Rji − Eji represents the “inactive
state” [48, 49]. Similar to the synaptic current, the recovered state is set toU = 0.3 of neuron
transmitters after the presynaptic action potential is reached. The portion decreases exponen-
tially to the inactive state with values of time scale τinact = 3ms. The recovery time scale is set to
τrec = 500ms.

Random neuron networks with depressing synapses generate synchronous activity of inte-
grating and spiking neuron behavior [49]. On the other hand, all or none activity behavior is
observed in cultured networks [50, 51]. The weight of the synaptic connections was set in all
networks to represent a network bursting of 0.1 ± 0.01Hz which is viewed as a realistic bursting
rate [51]. Each neuron network was created and simulated for 200 seconds of network activity
to evaluate the bursting rate average with an initial value of αint = 5.0pA. Each time it was bigger
than the target bursting rate the synaptic weight αint was decreased by 10% and vice versa for
smaller values. Linear extrapolation was used to iteratively adjust until the result was smaller
than 0.01 Hz to the target value.

Simulating Neural Network Calcium Fluorescence Spiking Signals
Neuron spiking activity was used to model the calcium fluorescence signals and simulate the
experiments of fluorescence signal measured. Based on [52], a simulation model was used
which performs rapid increase of fluorescence after activation. The rapid increase is followed
by a gradual decay of tCa ¼ 1s. The model includes the concentration of calcium located

between the neurons that match to the fluorescence experimental values. The concentration is
changed for each action potential that the neuron evokes for a time step t by a fixed amount of
ACa

¼ 50m, which causes fast changes of the concentration defined by

½Ca2þ�t � ½Ca2þ�t�1 ¼ � Dt
tCa

½Ca2þ�t�1 þ ACa
nt

where nt is the total number of action potentials.
For a given neuron i the fluorescence level F is reached by performing saturating static non-

linearity on the calcium concentration, followed by adding noise ηt using Gaussian distribution
with zero mean represented as:

Fi;t ¼
½Ca2þ�t

½Ca2þ�t þ Kd

þ Zt

The noise in the simulations was with a standard deviation of 0.03 and a set simulation satu-
ration concentration of Kd = 300μM.

Simulation of Light Scattering
The simulation included light scattering around the neuron cells based on a predefined area
between them. The distance between each two neurons i and j is defined by dij. The scattering
length scale is based on the normal light deviation for such optical devices and instruments
and set to λsc = 0.15mm. For a given neuron Fsc

i;t the fluorescence extent is defined by:

Fsc
i;t ¼ Fi;t þ Asc

XN
j¼1;j6¼i

Fj;texpf�ðdij=lscÞ2g
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Where the scattering effect overall capacity in the simulation is determined by Asc. The value of
the scaling factor is small, Asc = 0.15 to represent the continuing effect on the simulation.

Simulation of Generalized Entropy for Neuron Signal
The Transfer Entropy (TE) from two discrete Markov processes X and Y of order k is defined
by [53]:

TEY!X ¼
X

Pðxnþ1; x
ðkÞ
n ; yðkÞn Þlog Pðxnþ1jxðkÞn ; yðkÞn Þ

Pðxnþ1jxðkÞn Þ

where n represents each time period measured, xðkÞn is a vector of size k with measurements of X

in time periods n, n−1, . . ., n−k. For all values of xnþ1; x
ðkÞ
n and yðkÞn the total value is calculated.

According to Kullback-Leibler divergence [54], TE represents the distance based on proba-
bility of the space between a neuron node transition matrix Pðxnþ1jxðkÞn Þ and two neuron node

transition matrices Pðxnþ1jxðkÞn ; yðkÞn Þ. If the two transition matrices are identical, then the dis-
tance measure, TE, is defined as zero and vice versa. Signaling dependence of the transition
dynamics of X on Y occurs only if transitions of X are not dependent on existing values of Y
and are greater than zero.

To analyze directed functional connectivity between different neuron network nodes, the
Transfer Entropy was applied. To isolate potential spike events, a discrete differentiation opera-
tor was used on the calcium fluorescence time series Fsc

x;t . For a neuron network node

x, xn ¼ Fsc
x;nþ1 � Fsc

x;n. This is performed as pre-processing in order to improve the signal-to-

noise ratio. The preprocessing creates for a limited number of data points more accurate proba-
bility distributions.

Evaluating Similarity with Earth Mover's Distance
The Earth Mover’s Distance (EMD) is a method for image comparison based on measuring
two signatures in color space. Each image is represented by color histograms, and the distance
between the two distributions can be viewed as a given ground distance.

The problem can be viewed as two given distributions, the mass of earth spread in space and
collection of holes in space. The EMD calculates the least amount of work needed to move the
earth to cover the holes with earth. The unit of work relates to transporting a unit of earth by a
unit of ground distance.

A signature is defined as a set of clusters or modes of a distribution. Each cluster is repre-
sented by a single point representing the cluster center and a weight representing the cluster
size.

EMD can be formalized as a linear programming problem: Let P ¼
fðp1;wp1

Þ; . . . ; ðpm;wpm
Þg be the first signature withm clusters, where pi is the cluster represen-

tative and wpi is the weight of the cluster; Q ¼ fðq1;wq1
Þ; . . . ; ðqn;wqn

Þg the second signature
with n clusters; and D = [dij] the ground distance matrix where dij is the ground distance
between clusters pi and qj.

The goal is to find a flow = [fij], with fij the flow between pi and qj, that minimizes the overall
cost

WORKðP;Q; FÞ ¼
Xm
i¼1

Xn
j¼1

dijfij
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subject to the following constraints:

fij � 0 1 � i � m; 1 � j � n

Xn
j¼1

fij � wpi
1 � i � m

Xm
i¼1

fij � wqj
1 � j � n

Xm
i¼1

Xn
j¼1

fij ¼ min
Xm
i¼1

wpi
;
Xn
j¼1

wqj

 !

The first constraint allows moving “earth” from P to Q and not the opposite way. The fol-
lowing two constraints restrict the amount of earth that can be moved by the clusters in P to
their weights and the clusters in Q to receive no more earth than their weights. The last con-
straint forces the movement of the maximum amount of earth possible. This amount is defined
as the total flow. After the transportation problem is solved, and the optimal flow F has been
found, the earth mover's distance is defined as the work normalized by the total flow:

EMDðP;QÞ ¼
Pm

i¼1

Pn
j¼1 dijfijPm

i¼1

Pn
j¼1 fij

EMD is used to analyze the differences between the neuron brain activity and the research-
related “invisible brain” activity images. The EMD is also used to compare a set of images,
which can be viewed as a movie, each set representing a research topic over time.

The activities of the research topics are compared between the domain of medicine and the
domain of physics according to the subject category identified by Web of Science field tags. In
addition, an analysis is performed to compare research activity based on data extracted from
different sources, including Web of Science subject category, PubMed registry number repre-
senting concept records, and USPTO representing patent classifications.
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