
Failing & !Falling (F&!F): Learning to Classify
Accidents and Incidents in Aircraft Data

Jarrod Carson Kane Hollingsworth Rituparna Datta Aviv Segev
Department of Computer Science

University of South Alabama
Mobile, AL, USA

{jmc1627@jagmail., kmh1622@jagmail., rdatta@, segev@}southalabama.edu

Abstract—Journey by aircraft is the only option for long
distance transportation and also one of the frequently used modes
of transportation of passengers. As a result, safety of passengers
and efficiency of the aircraft depend on maintaining efficient
running conditions. Although many safety standards are followed
in the design of the aircraft and thus there are fewer accidents,
it is necessary to perform a thorough analysis to avoid risks that
may occur during flight time. In the present work, we propose
a maintenance strategy, Failing And Not Falling (F&!F), based
on the Federal Aviation Administration (FAA) data in the United
States. We work with the dataset of Boeing 737. The data consists
of 72 features with 137,236 records which describe an aircraft
accident or incident. These features are used to predict whether
an incident will be identified during aircraft maintenance or
during aircraft operation and what specific type of incident will
occur. The prediction method is based on the integration of a
decision tree and a unique neural network at each node of the
decision tree. The results obtained using different architectures
show how deep the neural networks should be, how to identify the
relevant features, and the success of combining decision trees and
neural networks. Moreover the neural networks and the decision
tree approach also successfully identified the important features
of maintenance. This method can be used for the maintenance
of any data in multiple domains.

Index Terms—Machine learning, decision trees, maintenance,
aircraft

I. INTRODUCTION

An aircraft is a very complicated dynamic system with
interaction between several components. As a result, main-
tenance of each sub-component as well as the overall sys-
tem is necessary. A failure of one of the components may
damage the whole system. Moreover, aircraft have structural,
mechanical, heat generation, and electrical components, to
name a few, and different domain experts are necessary for
the maintenance of each one. The tremendous advancement
of fast processing computers and prediction based machine
learning algorithms started attracting researchers and industri-
alists to integrate maintenance with computer based predictive
maintenance where a machine learning algorithm can serve as
a domain expert of each component. Unlike different types of
maintenance practiced by experts, predictive maintenance of
aircraft needs to identify a fault in a system or a subsystem
while the entire system is in operation. In addition, predictive
maintenance can also help to achieve better reliability and
efficiency for the performance of the overall system.

All main components and subcomponents of an aircraft
must be in functioning condition during the run time, and
as a result the performance of each system component must
be continuously monitored to ensure safety of passengers as
well as to avoid grounding of aircraft which is directly related
to the profit of the company. Predictive maintenance is the
way to achieve necessary features, such as safety, smoothness
of operation, and avoidance of unusual breakdown. Each
system component and subsystem component are integrated
with different sensors which provide real time data to monitor
the system performance. Machine learning and decision trees
can be used to analyze the sensor data and predict the failure
that may occur during run time.

We propose a Failing And Not Falling (F&!F) method
for classifying the accidents and incidents according to the
attributes collected from the aircraft system. An accident is
an unexpected event that may result in property damage and
results in an injury or illness. An incident, however, is an
unexpected event that may result in property damage but does
not result in an injury or illness. Incidents are also called “near
misses” or “near hits.” Our method is based on integrating
neural networks with decision trees. A neural network is
placed in each decision node of the decision tree.

In this paper, the dataset is obtained from Boeing 737 air-
craft1, 2. The Boeing 737 is a twin-engine airplane operated
in the short-medium ranges from sea level (less than 6000 ft).
The recent version of the Boeing 737 aircraft, which is known
as Boeing 737 max, has suffered from software problems.
As a result, many orders of the Boeing 737 max have been
canceled by customers. This failure of the Boeing 737 max is
the motivation of the present work to address the Boeing 737
dataset.

II. RELATED WORK

A. Aircraft Maintenance

According to federal aviation regulations, all aircraft must
undergo maintenance after flying a certain number of hours
[5]. Maintenance is carried out at night to allow for better
aircraft utilization and therefore aircraft remain overnight at a
maintenance location every three to four days, according to the

1https://www.faa.gov/data research/aviation data statistics/data downloads/
2https://av-info.faa.gov/dd sublevel.asp?Folder=%5CSDRS
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aircraft type, and a balance-check is performed periodically.
After the schedule is set, the aircraft are routed to fulfill these
maintenance requirements [3].

Aircraft maintenance scheduling is one of the major de-
cisions an airline makes during its operation [2]. When a
flight schedule is set and aircraft are assigned to it, the air-
craft maintenance-scheduling problem is to determine which
aircraft should fly which segment and when and where each
aircraft should go through the different levels of maintenance
required by the Federal Aviation Administration. The objective
is to minimize the maintenance cost as well as any costs
associated with the re-assignment of aircraft to the flight
segments.

A self-regulatory model was developed by McDonald et al.
[1] to examine different safety management systems and safety
culture in aircraft maintenance organizations, with emphasis
on the human and organizational aspects. The model was
effective in analyzing the relevant features of each organiza-
tion’s safety management system, although it underestimated
the roles of planning and change.

Factors related to situation awareness in aviation mainte-
nance teams were investigated by Endsley and Robertson [4].
In many environments, situation awareness was found to be
critical for performance and error prevention. The research
showed barriers and problems for situation awareness both
across and within teams involved in aviation maintenance.

Cognitive error models have looked into the unsafe actions
that lead to many accidents in safety-critical environments.
Most models of accident causation are established on the idea
that human errors are in the context of contributing factors.
Yet published information on possible connections between
specific errors and contributing factors is lacking. A survey
using a self-completed questionnaire [6] reported that of a
total of 619 safety occurrences involving aircraft maintenance,
96% were related to the actions of maintenance personnel.
The research indicated the types of errors involved and the
contributing factors associated with those actions. Each type
of error was linked with a particular set of contributing factors
and specific occurrence outcomes. The associations included
links between memory lapses and fatigue and between rule
violations and time pressure.

A short-term planning methodology of the line maintenance
activities of an airline operator, at the airports, during turn-
around time was proposed by Papakostas [8]. The methodol-
ogy offered decision making for deferring maintenance actions
that impact the dispatching of the aircraft, with the goals
of high fleet operability and low maintenance cost. A multi-
criteria mechanism assessed a set of generated maintenance
plan alternatives on the basis of health assessment and other
information regarding operational and financial constraints at
the operator’s fleet level. An alternative was defined as the
possible allocation of all deferred maintenance tasks to a set
of suitable airport resources. The decision making criteria were
cost, remaining useful life, operational risk, and flight delay.

Recent statistics on causes of aviation accidents and inci-
dents show that to increase air-transportation safety the impact

of human errors on operations must be reduced [7]. Aviation
maintenance employees work under high-pressure conditions;
they have strict time constraints and stringent guidelines. The
primary advantages of computer-based systems for the training
or support of technicians are that computers store and recall
facts and can help humans clearly understand them. These
features can help minimize errors from procedure violations,
misinterpretation of facts, or insufficient training. Currently
many factors, such as unwieldy hardware, the need to put
markers on the aircraft, and the need to quickly create digital
content, appear to interfere with effective aviation maintenance
implementation in industry.

B. Decision Trees and Neural Networks

Previous research discussed the mapping of decision trees
into a multilayer neural network structure that can be used for
the systematic design of a class of layered neural networks,
called entropy nets [10]. The research described a number of
important issues such as automatic tree generation, incorpora-
tion of incremental learning, and generalization of knowledge
acquired during the tree design phase. The work presented the
number of neurons required in each layer as well as the desired
output, thus leading to a faster progressive training procedure
that enables each layer to be trained separately.

Another research compared the efficacy of particle iden-
tification in physics through artificial neutral networks and
boosted decision trees [11]. On the basis of studies of Monte
Carlo samples of simulated data, the research found that
particle identification with boosting algorithms performs better
than artificial neural networks. In other works, prediction of
electricity energy consumption and sound pressure level was
analyzed using traditional regression analysis, decision trees,
and neural networks [12], [17].

Comparison of neural networks [19], naive Bayes [16],
and decision tree [18] classifiers for the automatic analysis
and classification of attribute data from training course web
pages was performed [13]. The work presented a naive Bayes
classifier and used the same data sample through the decision
tree and neural network classifiers to calculate the success rate
of the classifier in the training courses domain. The results
showed that the naive Bayes classifier was the best choice for
the training courses domain.

Most prior work compared classification methods such as
neural networks, decision tree induction, and linear discrimi-
nant analysis [14], [15]. Analysis of variance is used to identify
any significant differences in the results of the methods. The
issues of finding the most appropriate network size and using
an independent validation set to determine when to stop train-
ing the network are also discussed. However, the integration
of decision trees and neural networks as a unique classifying
method for aircraft maintenance has not been described in the
literature.
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III. FAILING & !FALLING (F&!F): DECISION TREE AND
NEURAL NETWORKS CLASSIFYING METHOD

A. Uniqueness of the Problem

Compared to many other classification problems, the issue
of determining a cause of an aircraft accident or incident usu-
ally depends on multiple attributes. Furthermore, any solution
found consisting of a classification method would not identify
the cause but identify the main feature, or subsystems, which
contributed to the accident or incident.

The problem of classification is based on the assumption
that many values of the data are missing. In addition, certain
records have fields which might have been mislabelled due to
erroneous handling or just to save time during the recording
of an incident.

Last but not least, an error which leads to an accident
could easily cause a large number of casualties. Since the
aircraft types are shared by multiple organizations, the chance
of a rare incident reoccurring is relatively high. Therefore, the
classification of an incident at an early stage is critical.

B. Problem Setting

Since we aim to use a decision tree and multiple neural
networks for learning to classify incidents and accidents, the
first step is quantifying the input in numeric values. Many of
the inputs are formatted as textual labels or free text affiliated
with the value such as: Aircraft Make, Aircraft Model, and Part
Name. These labels for each input attribute were assigned a
numerical value to represent all possible labels. The numerical
value was designed to have a uniform distribution U(0, 1),
with -1 for no value.

The next issue was to define the depth of each neural
network in each node of the decision tree. Due to the success
of deep neural networks in multiple domains, we analyzed how
deep the neural network should be to optimize the results. We
analyzed how many hidden layers, n, are required to optimize
the neural network performance. Although theoretically it
could be assumed the deeper the better n −→ ∞, in reality,
we show in the experiments (Section IV) that the optimum
number of hidden layers is reached fairly quickly at 3-4 layers.
Furthermore, after a fixed number of added hidden neural
network layers, the results suddenly drop to be equivalent to
guessing. In our experiments, adding any additional hidden
layers above 29 results in a drop to 50% of the performance
results measured, which is equivalent to guessing in a binary
decision tree.

Theoretically, the number of inputs in the neural network
should be equal to the number of variables which are available.
The assumption is that the neural network can learn to ignore
the attributes which do not contribute to the optimization of
the solution. In reality, these are two different tasks which
should be handled by different neural networks:

• Classifying the important contributing input variables.
• Optimizing a single decision in a classification.
For classifying the important contributing input variables, a

neural network was used for all the existing input variables.

Once the neural network results have converged to a fixed
value, we evaluate the weights. The weights between the input
layer and the first hidden layer represent the importance of
each input variable. Input variables with low mean weight
value have less contributing effect to the optimization of the
classification and therefore were removed.

The experiments show that limiting the number of input
variables contributed to the performance of the classification.
The best number of input variables can be determined by
organizing the input variables in descending absolute average
weight order and either adding or removing one variable at
a time until there is a change in the output performance. It
should be noted that a large mean weight difference does
not always correlate to a large difference in the performance.
However, the descending order of the mean weight is an
important factor contributing to the output performance.

Fig. 1: Decision Tree - Neural Network F&!F Method

C. Integrating Decision Trees and Neural Networks

Next, we aim to optimize a single decision in a classifi-
cation. We integrate the decision tree approach with neural
networks. We create a decision tree with a neural network at
each node of the decision tree, displayed in Fig. 1.

The unification of the decision tree and neural network
approach allows us to integrate the advantages of both meth-
ods. The neural network works well while classifying into
categories where the boundaries of classification are less
distinct, but performance drops when there is a large number
of categories. The decision tree works with a large number of
categories which are distinctly classified.

The decision tree is built based on a set of possible
results which can occur (accidents or incidents). For this,
we choose the best possible result attribute with the highest
information gain. To define information gain, we define a
measure commonly used in information theory, called entropy,
which characterizes the (im)purity of an arbitrary collection of
examples [9].

Entropy H(S) is a measure of the amount of uncertainty
in the dataset S

H(S) =
∑

c∈C

−p(c)log2(p(c))

4359

Authorized licensed use limited to: UNIV OF SOUTH ALABAMA. Downloaded on October 15,2020 at 17:32:36 UTC from IEEE Xplore.  Restrictions apply. 



Where,
S - The dataset for which entropy is being calculated in the

current iteration.
C - The set of the classes in S,C = 0, 1.
p(c) - The proportion of the number of elements in class c

to the number of elements in set S.
If H(S) = 0 then the set S is perfectly classified.
Information gain IG(A) is the measure of the difference

in entropy from before to after the set S is split on a result
attribute A. This measures how much of the uncertainty S was
reduced after splitting set S on result attribute A.

IG(A,S) = H(S)−
∑

t∈T

p(t)H(t)

Where,
H(S) - Entropy of set S.
T - The subsets created from splitting set S by result

attribute A such that
S =

⋃

t∈T

t.

p(t) - The proportion of the number of elements in t to the
number of elements in S.

H(t) - Entropy of subset t.
The information gain can be calculated for each remaining

attribute. The attribute with the largest information gain can
be used to split the set S on each iteration.

After selecting the attribute with the largest information
gain, we build a neural network based on the previous criteria
discussed in Section III-B. For each maintenance problem, we
construct a neural network which is designed to classify only
if the problem occurs. Each neural network at each node of the
decision tree consists of all the result attributes which could
lead to a possible accident or incident. It should be noted that
the result attributes represent the problem and are different
from the input attributes filtered in the previous section.

Each leaf of the decision tree includes a neural network with
a binary classification task which improves its performance.
Since each neural network is tailored to a specific classifica-
tion, the overall performance of the system does not depend
on the performance of a single neural network.

The actual implementation does not necessarily require the
implementation of neural networks for all possible problem
attributes since many categories of problems in the area of
maintenance can be classified under one classification basket.
Furthermore, a maintenance investigator can sometimes easily
identify the correct cause at a higher level of the classifications.

IV. EXPERIMENTS AND RESULTS

A. Data

The Federal Aviation Administration collects all preliminary
accident and incident information reported to the Office of Ac-
cident Investigation and Prevention. The data includes accident
and incident data categorized by the aircraft manufacturer. The

experiments focused on the Boeing 737 dataset due to recent
events.

The dataset included 72 variables used as inputs to each
of the neural networks. Each neural network had a single
neuron classifying whether the record belongs to the specified
category. 137,236 records of the Boeing 737 were used in
the experiments. The data was split into 75% training, 15%
testing, and 10% validation. The testing data is used to test
the accuracy and F1 of the neural network. The validation data
makes sure that there is no overfitting.

The following Table I details the input description. In
addition to the 72 variables, the last value, Discrepancy,
has a free text description of the accident or incident. The
Discrepancy field was used to validate the value of the neural
network results.

TABLE I: Accident and Incident Data

Operator Control Number Difficulty Date
Submission Date Operator Designator
Submitter Designator Submitter Type Code
Receiving Region Code Receiving District Office
SDR Type JASC Code
Nature Of Condition A Nature Of Condition B
Nature Of Condition C Precautionary Procedure A
Precautionary Procedure B Precautionary Procedure C
Precautionary Procedure D Stage Of Operation Code
How Discovered Code Registry N Number
Aircraft Make Aircraft Model
Aircraft Serial Number Aircraft Total Time
Aircraft Total Cycles Engine Make
Engine Model Engine Serial Number
Engine Total Time Engine Total Cycles
Propeller Total Time Propeller Total Cycles
Part Make Part Name
Part Number Part Serial Number
Part Condition Part Location
Part Total Time Part Total Cycles
Part Time Since Part Since Code
Component Make Component Model
Component Name Component Part Number
Component Serial Number Component Location
Component Total Time Component Total Cycles
Component Time Since Component Since Code
Fuselage Station From Fuselage Station To
Stringer From Stringer From Side
Stringer To Stringer To Side
Wing Station From Wing Station From Side
Wing Station To Wing Station To Side
Butt Line From Butt Line From Side
Butt Line To Butt Line To Side
Water Line From Water Line To
Crack Length Number Of Cracks
Corrosion Level Structural Other
Discrepancy

B. Methods

The following activation functions were used in the exper-
iments:

Tanh - Hyperbolic Tangent Function

f(x) = tanh(x) = ex−e−x

ex+e−x
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Tanh with Dropout - Tanh with a dropout activation function
of a 0.5 ratio for each hidden layer.

Rectifier (default) - Positive part of its argument

f(x) = x+ = max(0, x)

Rectifier with Dropout - Rectifier with a dropout activation
function of a 0.5 ratio for each hidden layer.

Maxout - Given an input x ∈ Rd, a maxout hidden layer
implements the function

hi(x) = maxj∈[1,k]zij

where zij = xTWij + bij , and W ∈ Rdmk and b ∈ Rmk

are learned parameters.
Maxout with Dropout - Maxout with a dropout activation

function of a 0.5 ratio for each hidden layer.
Multiple neural network configurations were analyzed for

best performance. For the following experiments, a neural
network with 3 hidden layers with 60, 40, and 20 neurons
respectively was used.

Fig. 2: Decision Tree - Neural Network Experiment

C. Experiments

The dataset is first preprocessed to conduct the experiments.
The Pandas library in Python is used for preprocessing and
simulation experiments. The strings in each column/variable
of the dataset are parsed and mapped to an integer value. The
starting value is selected as 100 and is increased by 100 for
every unique subsequent string. This process is repeated for
every variable individually. However, in the case of an integer
input or floating point variables, magnitude is important (such
as the total flight time of a 737), and the values are not mapped
for that variable and are simply skipped. For all variables,
a null value is mapped to -1. The data set is labeled in
the present study. While classifying the inputs, we used the
significant inputs from the root of the decision tree where
only maintenance or non-maintenance was classified. Through
further experimentation we determine whether the significant
input is changed at each node of the tree.

The dataset is classified into two categories: whether the
problem with the aircraft occurred during maintenance and not
during maintenance. Thereafter, the data is further classified
into whether or not the problem involved cracks and whether

Fig. 3: F1 vs. Number of Layers

Fig. 4: Accuracy vs. Number of Layers

or not the problem involved the fuselage. In this way, by
classifying fuselage after classifying maintenance, we mean
that we first identified that the problem occurred during
maintenance and then identified that the problem involved the
fuselage.

The first set of experiments analyzed how deep the deep
neural networks should be. We analyzed a binary classification
of accident or incident identification during Maintenance or
Non-Maintenance. We increased the neural network hidden
layers from 1 to 100 and checked how the F1 and accuracy
results change. These experiments analyzed what the correct
structure of the neural network would be.

The second set of experiments analyzed whether the bigger
the data set, the better the results. We organized the input
variables in descending order of the mean value of the weight
connecting the input layer and the first hidden layer. We
increased each variable in descending order of weight value
and compared the Area Under the Curve (AUC), Accuracy,
Precision, Recall, and F1 values. Each of these values was
compared with the six types of activation functions.

The third set of experiments analyzed the advantages of in-
tegrating the decision tree and the neural network methods. An
outline of the set of experiments performed is described in Fig.
2. First a neural network was used to perform a binary classifi-
cation into categories Maintenance or Non-Maintenance. Each
of the classified records was then again classified into Crack or
No Crack and Fuselage or No Fuselage. The classification into
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(a) AUC/Accuracy of All Inputs vs. Significant Inputs (b) Average Mean for Leading First Layer Input Weights

Fig. 5: Significant Inputs

each of these subcategories was performed using all the data
previously classified into the main category. In other words,
a record from Maintenance and Crack could also belong to
either Fuselage or Non-Fuselage but not to both. As can be
seen from Fig. 2 four different neural networks were used to
classify to the eight different sub-classifications.

D. Results

Fig. 3 and Fig. 4 display results of the analysis of the
appropriate depth of the deep neural network. Results peak
at three hidden layers and continue around the same F1 (Fig.
3) and Accuracy (Fig. 4) levels until 29 hidden layers. From
this point onward, the results show that the network would be
too deep. The network results show that over 29 hidden layers
is equivalent to guessing in a binary classification. The F1
value becomes slightly above 50% and the Accuracy slightly
below 50%. It seems that a three hidden layer neural network is
accurate and fast enough to perform the task of classification.

Fig. 5a presents the classification results into the Mainte-
nance and Non-Maintenance categories as the number of input
variables increases. Fig. 5a shows the AUC and Accuracy of
all six activation functions comparing the results of using only
the top 11 mean weight variables versus using all possible 72
variables. The results show the accuracy is almost the same,
−0.12%, and up to 4.77% better when using only the top
11 variables. The AUC is less consistent and varies from
−1.76% to 4.44% for using the top 11 identified variables
versus all 72. The results show the advantage of the method
of identifying the top variables before using the neural network
as a classifying tool.

Fig. 5b shows the average mean for the leading inputs
weight value between the input layer and the first layer.
These identify the main variables which are relevant for
high accuracy results. The top 11 variables appear in the
circumference box. The results show that issues such as Part
Make, Receiving Region Code, and Part Total Time can clearly
be identified as the most relevant classifiers. The list of the
leading main contributors for the accident and incident reports
ends with Aircraft Total Cycles. The Aircraft Model is already
identified as a less unique classifier for the type of issue

involved. These values included the different models of the
Boeing 737. However, the Boeing 737 max data was not
included as a different aircraft model by the time the data
was collected.

Fig. 6a presents the AUC as the number of inputs increases.
Fig. 6b presents the Accuracy as the number of inputs in-
creases. The inputs in the x-axis are arranged in descending
order of mean weights leading from the input layer of the
neural network to the first hidden layer. The AUC continues
to increase as the number of inputs increases up to 16 inputs.
However, the accuracy does not improve over 11 inputs which
were identified as the important variables.

The AUC difference can be viewed as a less accurate value
for measuring performance. In this case, it can be attributed to
the low number of values measured to create the curve. This
could explain the difference when measuring the area with
AUC versus comparing a single Accuracy result.

Similarly, Fig. 6c presents the Recall and Fig. 6d presents
the Precision as the number of variables with the descending
mean weight increases. These results display that the recall
actually declines, from 100% to above 85% as more variables
are added. However, the precision increases and stabilizes after
the top 11 weighted variables are included. The results show
that the recall has a slight drop as more variables are added.
However, the precision is determined by the leading or ”more
important” variables.

These results can be be viewed more clearly when viewing
the F1 value appearing in Fig. 7a. As the number of highly
weighted variables is added the value peaks up to 11 variables.
From 11 variables the F1 is stable at around 90%. Furthermore,
the Precision vs. Recall in Fig. 7b shows that most results are
clustered in the top right except for the initial values with high
recall.

The results show the correct identification of the important
inputs by the method of classifying mean weights in descend-
ing order. The additional input variables which do not seem
to improve the results can be attributed to constant values,
variables which are dependent on other inputs, or values which
are inconsistent with the expected results.

Fig. 8 describes the precision versus recall of the lower
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(a) AUC vs. Inputs (b) Accuracy vs. Inputs

(c) Recall vs. Inputs (d) Precision vs. Inputs

Fig. 6: AUC, Accuracy, Precall, and Precision vs. Number of Inputs

(a) F1 vs. Inputs (b) Precision vs. Recall

Fig. 7: F1, Precision vs. Recall vs. Number of Inputs

level classification of the decision tree presented in Fig. 2.
Each neural network performance on the second classification
level is presented.

Fig. 8a shows a very high precision and recall level of
classifying a Crack after previous Maintenance classification
has been performed. Similarly, classifying a record as Non-
Maintenance and then classifying the Crack has good precision
and recall results (Fig. 8c). This shows the advantage of using
the decision tree with the neural network to classify correctly
well defined categories.

On the other hand, Fig. 8b and Fig. 8d show what happens
when the decision tree and neural network are not aligned
correctly. In this case, classifying Fuselage after classifying
Maintenance has slightly lower precision versus recall results.
However, the classification of Fuselage after the classification
as Non-Maintenance has been performed is centered around
the diagonal which represents guessing in a binary classifica-
tion. This shows the incorrect decision tree structure. One less
likely possible explanation is that all Fuselage classifications
are only identified during Maintenance. Another, more likely,
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(a) Precision vs. Recall for Maintenance and Crack (b) Precision vs. Recall for Maintenance and Fuselage

(c) Precision vs. Recall for Non Maintenance and Crack (d) Precision vs. Recall for Non Maintenance and Fuselage

Fig. 8: Precision vs. Recall for Maintenance, Crack, and Fuselage

Fig. 9: Methods Comparison

option is that this part of the decision tree is not properly
constructed. In other words, Fuselage under Non-Maintenance
cannot be classified. This means that the dataset did not
have a sufficient number of cases where problems with the
fuselage occurred during a time when the aircraft was not
undergoing maintenance, and therefore the present method
could not accurately be classified with our current methods.

At least one more layer of sub-classification needs to be
added in order to correctly identify this issue. Another concept
should be added to the decision tree below Non-Maintenance
before trying to identify whether there is a Fuselage problem.

Finally, Fig. 9 shows the advantage of our F&!F method in-
tegrating the neural networks with the decision tree compared
to the commonly used method which uses just neural networks
for classification. The figure shows the precision and recall as
the number of inputs increase. The F&!F method outperforms
the method of using only neural networks for both precision
and recall.

V. CONCLUSION

This paper introduces a maintenance strategy for the Federal
Aviation Administration (FAA) data in the United States.
The problem is addressed using neural networks. To verify
the efficiency of the method, many experiments have been
performed. We tested the method using different architectures,
different activation functions, and different hidden layers. The
method and the neural network models are general enough to
be applied to any kind of output data for prediction. The neural
network was tested again with important features, and the
similar prediction results confirm that it successfully identified
the redundant features.

There are many directions of future research continuing
from the present work. One direction is to fine-tune the model
to make it adaptive. Other possible directions of research are to
develop a decision tree for maintenance and air-traffic control,
to develop a real time machine learning based maintenance
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strategy, and to integrate the developed method with other
aircraft data using transfer learning.

The failure of the Boeing 737 max led us to work on the
Boeing 737 dataset. The failure data of the Boeing 737 max is
not available in the open source repository. However, as both
Boeing 737 and Boeing 737 max belong to same family, there
are many common features. The common features motivated
us to predict the maintenance using the Boeing 737 dataset.

REFERENCES

[1] McDonald, N., Corrigan, S., Daly, C., Cromie, S., “Safety management
systems and safety culture in aircraft maintenance organisations,” Safety
Science, vol. 34(1), pp. 151–176, 2000.

[2] Sriram, C., Haghani, A., An optimization model for aircraft maintenance
scheduling and re-assignment, Transportation Research Part A: Policy
and Practice, vol. 37(1), pp. 29–48, 2003.

[3] Gopalan, R., Talluri, K. T., “The aircraft maintenance routing problem,”
Operations Research, vol. 46(2), pp. 161–292, 1998.

[4] Endsley, M. R., Robertson, M. M., “Situation awareness in aircraft
maintenance teams,” International Journal of Industrial Ergonomics, vol.
26(2), pp. 301–325, 2000.

[5] Kinnison, H. A., Siddiqui, T., “Aviation Maintenance Management,”
McGraw-Hill Professional, New York, New York, United States, 2012.

[6] Hobbs, A., Williamson, A., “Associations between errors and contribut-
ing factors in aircraft maintenance” Human Factors, 45(2), 186–201,
2003.

[7] De Crescenzio, F., Fantini, M., Persiani, F., Di Stefano, L., Azzari
P., Salti, S., “Augmented reality for aircraft maintenance training and
operations support,” IEEE Computer Graphics and Applications, vol.
31(1), pp. 96–101, 2011.

[8] Papakostas, N., Papachatzakis, P., Xanthakis, V., Mourtzis, D., Chrys-
solouris, G., “An approach to operational aircraft maintenance planning,”
Decision Support Systems, Vol. 48(4), pp. 604–612, 2010.

[9] Quinlan, J. R., “Induction of decision trees,” Machine Learning, vol.
1(1), pp. 81–106, 1986.

[10] Sethi, I. K., “Entropy nets: from decision trees to neural networks,”
Proceedings of the IEEE, vol. 78(10), pp. 1605–1613, 1990.

[11] Roe, B. P., Yang, H.-J., Zhu, J., Liu, Y., Stancu, I., McGregor, G.,
“Boosted decision trees as an alternative to artificial neural networks
for particle identification,” Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Asso-
ciated Equipment,vol. 543(23), pp. 577–584, 2005.

[12] Tso, G. K. F., Yau, K. K. W., “Predicting electricity energy consumption:
A comparison of regression analysis, decision tree and neural networks,”
Energy, vol. 32(9), pp. 1761–1768, 2007.

[13] Xhemali, D., Hinde, C. J., Stone, R. G., “Naive bayes vs. decision
trees vs. neural networks in the classification of training web pages,”
International Journal of Computer Science Issues, 4 (1), pp. 16–23, 2009.

[14] Curram, S. P., Mingers, J., “Neural networks, decision tree induction
and discriminant analysis: an empirical comparison,” Journal of the
Operational Research Society, vol. 45(4), pp. 440–450, 1994.

[15] West, D., “Neural network credit scoring models,” Computers & Oper-
ations Research, vol. 27(11-12), pp. 1131–1152, 2000.

[16] Letham, B., Rudin, C., McCormick, T., Madigan, D., “Interpretable
classifiers using rules and bayesian analysis: building a better stroke
prediction model,” Annals of Applied Statistics. 9(3), pp. 1350–1371,
2015.

[17] Pal, P., Datta, R., Segev, A., “A neural net based prediction of sound
pressure level for the design of Aerofoil,” Proceedings of Fuzzy And
Neural Computing Conference (FANCCO), 2019.

[18] Barros, R, C., Basgalupp, M. P., Carvalho, A. C. P. L. F., Freitas, A. A.,
“A survey of evolutionary algorithms for decision-tree induction,” IEEE
Transactions on Systems, Man and Cybernetics. Part C: Applications
and Reviews, vol. 42(3) pp. 291–312, 2012.

[19] Deng, H., Runger, G., Tuv, E., “Bias of importance measures for multi-
valued attributes and solutions. Proceedings of the 21st International
Conference on Artificial Neural Networks (ICANN). pp. 293–300, 2011.

4365

Authorized licensed use limited to: UNIV OF SOUTH ALABAMA. Downloaded on October 15,2020 at 17:32:36 UTC from IEEE Xplore.  Restrictions apply. 


