
On Neural Network Activation Functions and
Optimizers in Relation to Polynomial Regression

John Pomerat
University of South Alabama

Mobile, Alabama
jop1721@jagmail.southalabama.edu

Aviv Segev
University of South Alabama

Mobile, Alabama
segev@southalabama.edu

Rituparna Datta
University of South Alabama

Mobile, Alabama
rdatta@southalabama.edu

I. INTRODUCTION

Recently, research in machine learning has become more
reliant on data-driven approaches. However, understanding the
general theory behind optimal neural network architecture is,
arguably, just as important. With the proliferation of deep
learning and neural networks, finding optimal neural network
architecture is vital for both accuracy and performance. Re-
cently, extensive research on neural network architecture has
been performed [3], [4]. Additionally, while there has been
plenty of research on hidden layer neural network architecture
[2], activation functions are often not considered. In a network,
an activation function defines the output of a neuron and
introduces non-linearities into the neural network, enabling
it to be a universal function approximator [12]. In terms
of activation functions, one significant paper is Krizhevsky’s
seminole work on ImageNet classification and the creation of
the ReLU activation function [1]. In the paper, Krizhevsky
outlines the construction of an image recognition model using
the Rectified Linear Unit activation function (ReLU) for the
ImageNET LSVRC-2010 competition which outperformed the
state-of-the-art image recognition systems at the time [1].
Since then, ReLU has increased in popularity. In their 2018
conference paper, Bircanoğlu and Arica, with the assistance of
231 distinct training procedures, found ReLU to be the best
general activation function [12]. In addition to comparisons
of activation functions, Nwankpa, Ijomah, Gachagan, and
Marshall conducted a meta analysis of the field of research
centered around activation functions and found ReLU to be
the most popular activation function choice [5]. In terms of
optimizers, gradient descent has historically been the most
popular loss optimization algorithm, but with Kingma and
Ba’s 2014 paper [8], Adam: A Method for Stochastic Op-
timization, Adam optimizer is slowly becoming the industry
standard [11]. In their paper, Kingma and Ba cleverly combine
momentum descent, RMSprop, and Adagrad optimization into
one algorithm, Adam (or adaptive moment estimation) [8].
In addition to Adam, there are plenty of other optimizers
to choose from, including gradient descent, RMSprop [9],
Adagrad [10], and Adadelta [7]. Recently, many breakthroughs
have been made in terms of neural network performance,
improved GPU performance and adaptation to deep learning
tasks has created massive efficiency increases for the whole

field of machine learning. Furthermore, as machine learning
becomes increasingly optimized, the importance of efficiency
improvements will continue to rise. Thus, understanding the
optimal activation function and optimizer choice for a neu-
ral network is relevant. The goal of this paper is to make
comparisons between activation functions, optimizers, and,
more generally, entire neural network architectures, through
measured error in a training environment. In this paper, we
examine the performance of a wide variety of neural network
configurations on randomly generated polynomial data sets of
fixed degree. To do this, we compare various neural network
activation functions and optimizers while controlling for hid-
den layer configurations and degree of the underlying poly-
nomial dataset. Curiously, we find that the Sigmoid activation
function is more accurate than ReLU and Tanh for regression
tasks on low-featured polynomial data. We also reach the same
conclusion regarding Stochastic Gradient Descent (SGD) in
comparison to the Adam optimization function and Root Mean
Square Propagation (RMSprop). Additionally, we observe that
SGD is more efficient in the short term for finding local
minimums than Adam or RMSprop; however, after sufficiently
many epochs, performance differences between the optimizers
vanished.

II. METHODOLOGY

A. Generation of Polynomial Data

The tests in this paper were performed on artificially gen-
erated data. To begin, we used a random normal distribution
to create arrays containing 1000 x-values with a mean of 0
with standard deviation varying between arrays. After the x-
values had been generated, a degree, n, of a polynomial was
randomly chosen

p(x) = a0x
n + a1x

n−1 + a2x
n−2 + ...+ anx

0 (1)

the ai (coefficients) in this equation were also randomly
generated using a normal distribution with a mean of zero.
Next, y-values were calculated by plugging the generated x-
values into the polynomial (Fig. 1).

y = p(x) (2)

After the y-values had been calculated, random noise was
added to each y-value and the amount of noise was varied

2019 IEEE International Conference on Big Data (Big Data)

978-1-7281-0858-2/19/$31.00 ©2019 IEEE 6183

Authorized licensed use limited to: UNIV OF SOUTH ALABAMA. Downloaded on October 15,2020 at 17:35:34 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Random x values (red) and calculated y values (green)
on the generated polynomial function (blue).

between datasets. After the data had been generated, y-values
and x-values were combined to form single featured datasets,
each containing 10000 values, 8000 for training and 2000 for
testing.

B. Neural Network Architecture

The neural networks we use in this paper are configured
in the following way. The neural networks run regression
on polynomial datasets of varying degree generated from the
method described above. Additionally, each neural network
normalizes input data and initializes its weights and biases
to the middle of the range of the corresponding activation
function in order to reduce variance. Each neural network
is equipped with an optimizer, an activation function, and a
hidden layer architecture that all vary from test to test. We ran
each neural network for only 10 epochs to prevent overfitting,
as the small size of the polynomial datasets define a small
search space.

C. Activation Functions

In a neural network, if each neuron activation was calculated
purely as a weighted sum of its activations, then that neuron
would be a linear function. Because of this, a linear function
could be built to model the output of the entire network. This
is the purpose of an activation function. In machine learning,
an activation function is used to introduce nonlinearities into
the neural network. The three common activation functions
that will be examined in this paper are the following:

Sigmoid (or Logistic curve)

f(x) =
1

1 + e−x
(3)

Tanh (Hyperbolic Tangent)

f(x) = tanh(x) =
2

1 + e−2x
− 1 (4)

ReLU (Rectified Linear Units)

f(x) = max(0, x) (5)

D. Loss functions and Optimizers

A loss function is a function defined on a neural network
and a training set. A loss function provides a way of measuring
how far off the neural networks predictions are on a training
set. An optimizer is the algorithm used to minimize the loss
function. The most common optimizer is Gradient Descent
or Stochastic Gradient Descent (SGD) [6]. Gradient descent
works by first calculating the derivative of the loss function
and then changing the weights and biases in the network in the
direction of the calculated gradient reducing the loss function
in a series of steps. Stochastic gradient descent works the
same way, but instead uses a single or a handful of training
examples to calculate the gradient. Another optimizer is Root
Mean Square propagation (RMSprop), which uses momentum
to find minimums of the loss function computationally faster
compared to traditional optimizers. Additionally, the Adam
optimizer, first introduced in 2014, inherits some of the
benefits of RMSprop [8]. One of the key differences between
stochastic gradient descent and optimizers like Adam, is the
presence of momentum. Momentum enables an optimization
algorithm to use the average of the previous batches of gradient
descent to take the neural network to a minimum faster. The
momentum is calculated using a running average:

At = βAt−1 + (1− β)Xt (6)

Where At is the moving average of the loss for some train-
ing/testing example t, calculated from Xt, with β determining
the number of previous values on which At is calculated.

III. EXPERIMENTS

A. Comparing Activation Functions

The first test was performed to compare the performance
of various neural network activation functions on single fea-
tured polynomial input data. First, we generated datasets in
Numpy using the methodology described in II-A. We then
normalized the data and fed it through neural networks suited
for regression configured as described in II-B. We ran the
neural networks for 10 epochs with batch size of 5, and Mean
Squared Error (MSE) for error measurement. In the first test,
we equipped the neural networks with the Adam optimization
algorithm (with a learning rate of 0.001) which was kept
constant throughout the test while the activation functions and
the structure of the networks were varied. The average MSE
for each activation function during the test can be found in
(Fig 2).

Interestingly, even though ReLU is considered a better
choice than Sigmoid or Tanh, Sigmoid performed 10.1%
better than ReLU across the whole test. This is likely due
to the fact that single featured input data does not suffer
from the vanishing gradient problem. Curiously, the hidden
layer configuration seemed to make little difference in the
experiment. The only clear trend is a negative relationship
between MSE and dataset polynomial degree.

6184

Authorized licensed use limited to: UNIV OF SOUTH ALABAMA. Downloaded on October 15,2020 at 17:35:34 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Comparison of Activation Function Performance

B. Comparing Optimizers

The second test was performed similarly to the first one,
comparisons were made between a collection of optimizers
including the Adam optimizer (learning rate of 0.001), SGD
(Stochastic Gradient Descent) and RMSprop (Root Mean
Square Propagation). All of the neural networks ran on the
generated polynomial data, used ReLU as an activation func-
tion, and had varied hidden layer structure. Additionally, the
number of epochs was reduced to 3 to enable comparison by
avoiding identical accuracy values and to prevent overfitting.
We found that as degree increased, the optimizers began to
perform similarly. Again, it seems that neural network hidden
layer structure has virtually no impact on results. This time, we
observed that SGD performed far better (86.8%) than Adam or
RMSprop for low-featured polynomial input data of degrees 1-
3. This is likely due to SGD not using any kind of momentum
and is thus easily able to find a lesser minimum without
overshooting on fewer epochs.

C. Finding Optimal Configuration

We performed a final test to make comparisons between
combinations of activation functions and optimizers. To test
this, we equipped a set of neural network architectures with the
best performing activation function (Sigmoid) and the worst
performing optimizer (Adam). We then compared this set of
neural networks to the same set instead equipped with the
worst performing activation function (ReLU) and the best
performing optimizer (SGD). The test was run the same as
in the previous two experiments with the difference being
that the neural networks ran with only a single epoch. After
the test, the neural networks equipped with SGD and ReLU
performed better than those with the Adam optimizer and
Sigmoid. To observe the change in accuracy as the number of
epochs increased, this test was repeated 4 times for increasing
epochs, and the MSE (rounded to the nearest ten-thousandth)
across all the neural network architectures and activation
function optimizer combinations was averaged and recorded.
The results can be found in (Table I).

As epochs increased, the difference in accuracy began
to shrink and at 5 epochs the models became overfitted,
signified by an increase in MSE. Therefore, the SGD/ReLU
configuration was able to find a smaller local minimum than
the Adam/Sigmoid configuration for the first two epochs.

TABLE I: Adam and Sigmoid vs SGD and ReLU (MSE)

Epochs Adam/Sigmoid SGD/ReLU
1 0.0356 0.0112
2 0.0109 0.0099
3 0.0090 0.0091
5 0.0105 0.0106

However, after the 2nd epoch the two configurations found
a strong local minimum and after the 3rd epoch, the models
were overfitted. This result, combined with the results from
Section III-B imply that SGD finds lower local minimums on
few epochs than Adam optimization or RMSprop for single
featured polynomial datasets. As epochs increase, however,
accuracy differences from one configuration to another begin
to vanish.

IV. FUTURE WORK

One possible direction for future work could be generalizing
the results of this experiment beyond artificially generated
polynomial datasets, and making more comparisons of ac-
tivation functions and optimizers. Understanding activation
functions and optimizers in the context of deep learning is
critical in order to construct a general theory of optimal neural
network architecture which is important for both computa-
tional efficiency and accuracy in industry applications of deep
learning.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification
with deep convolutional neural networks, Advances in Neural Informa-
tion Processing Systems, 2012.

[2] S. Xu and L. Chen. A novel approach for determining the optimal
number of hidden layer neurons for FNN’s and its application in
data mining, International Conference on Information Technology and
Applications, 2008.

[3] D. Hunter, H. Yu, I. Pukish, S. Michael, J. Kolbusz and M. Wilam-
owski. Selection of proper neural network sizes and architectures - a
comparative study, IEEE Transactions on Industrial Informatics, 2012.

[4] W. Liu, W. Zidong, L. Xiaohui, Z. Nianyin, L. Yurong, and A. E. Fuad.
A survey of deep neural network architectures and their applications,
Neurocomputing 234, 11-26, 2017.

[5] C. Nwankpa, Winifred Ijomah, A. Gachagan, and S. Marshall. Activation
functions: comparison of trends in practice and research for deep
learning, arXiv preprint arXiv:1811.03378, 2018.

[6] F. Rosenblatt. The perception: a probabilistic model for information
storage and organization in the brain, Cornell Aeronautical Laboratory,
1954.

[7] M. D. Zeiler ADADELTA: an adaptive learning rate method, arXiv
preprint arXiv:1212.5701, 2012.

[8] D. P. Kingma and J. Ba. Adam: a method for stochastic optimization,
arXiv preprint arXiv:1412.6980, 2014.

[9] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: divide the gradient
by a running average of its recent magnitude, COURSERA: Neural
Networks for Machine Learning, 2012.

[10] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods
for online learning and stochastic optimization, Journal of Machine
Learning Research 12, 2011.

[11] A. Karpathy. A peek at trends in machine learning, Medium.com, 2017
accessed 8/16/19.

[12] C. Bircanoğlu and N. Arica. A comparison of activation functions
in artificial neural networks, Signal Processing and Communications
Applications Conference, 2018.

6185

Authorized licensed use limited to: UNIV OF SOUTH ALABAMA. Downloaded on October 15,2020 at 17:35:34 UTC from IEEE Xplore. Restrictions apply.

