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Abstract—The present work discusses optimal feedback con-
trol of a lower limb exoskeleton by determining optimal Linear
Quadratic Regulator (LQR) weighting matrices. A simplified
model of human gait having four degrees of freedom is
developed to describe the dynamics of the Single Support
Phase (SSP) of the gait cycle. The system is linearized about
the reference trajectory to apply an optimal controller. It is
observed that the choice of weight matrices are important to
controller performance. Instead of conventional diagonal weight
matrices, the more complex symmetric weight matrix is used
in the study. An optimization problem is formulated to find the
optimal weighting matrix by minimizing tracking error of joint
angles. Non-dominated sorting genetic algorithm (NSGA)-II is
then used to obtain the solution of a multi-objective constrained
optimization problem.

Index Terms—exoskeleton, linear quadratic regulator, human
gait, Evolutionary Computation, Multi-objective optimization,
NSGA-II, design of experiment

I. INTRODUCTION

With the aging process, many people start suffering from
the problem of weak limbs resulting in mobility disorders
and loss of sensory and motor function of limbs. Wearable
robotic devices are viable solutions to help people suffer-
ing from these issues by augmenting their strength. These
robotic devices, popularly known as exoskeletons, aid user
by providing external power and controlling the dynamics to
achieve desired motion. Due to the highly complex nature
of human walking, designing an efficient wearable robotic
device is a challenging process. There is a void for focused
research to be carried out on enhancing the efficiency and
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cost reduction of the system. Mechanical design, actuators,
and control strategy are the critical aspects of performance
of exoskeletons[1].

In-depth research has been carried out to develop sim-
plified yet realistic models of human gait. Vukobratović et
al.[2] introduced the concept of Zero Moment Point (ZMP).
This concept is widely used for stability and gait generation
in biped robots. Kajita et al.[3] modeled human gait as the
motion of inverted pendulum which laid the foundations
for much other further research. Li and Todorov proposed
Iterative Linear Quadratic Regulator (iLQR) approach to
solve non-linear biological systems[4]. Park et al.[5] used a
multi-objective evolutionary algorithm to generate an optimal
trajectory of humanoid robots by employing a multi-objective
quantum-inspired evolutionary algorithm to obtain solutions
of weighting matrices in an iLQR method.
This study aims to design an optimal Linear Quadratic
Regulator (LQR) controller for the exoskeleton system to
minimize the feedback error and ensure the stability of the
control system at each interval of time. The current paper is
organized as follows. It begins with a discussion about the
significant research work that has been carried out in recent
years in the field of human biped modeling and control strate-
gies. Next, a simplified dynamic model of the human bipedal
gait, having four degrees of freedom has been presented.
This is followed by designing an optimal Linear Quadratic
Controller (LQR) for the linearized dynamics of the system,
and closed loop system responses have been described. Since
the performance of the LQR controller depends upon the
choice of a weight matrix. Hence, an optimization problem is
formulated then to determine weight matrix which minimizes



the total error of this trajectory follower problem. Finally, the
conclusions are inferred, and possible future work that can
be carried out has been suggested.

II. DYNAMIC MODEL OF HUMAN GAIT

Broadly, human gait is comprised of two different phases
as a whole - Double Support Phase and Single Support
Phase. Double support phase (DSP) is the phase when both
the legs are in contact with the ground, and human adjusts
its posture for the next walking step; while, when only one
leg is in contact with the ground, gait is said to be in the
Single Support Phase (SSP). For an average human gait,
roughly around 30% of the gait cycle is constituted with the
double support phase, and the rest of the 70% is constituted
with the single support phase [6]. Each leg undergoes a
periodic motion for about 60% of the gait cycle acting as a
supporting limb for the body (or in the stance phase). For the
remaining 40% of the gait cycle, the leg performs a swing
motion about the pelvis to propel the body forward while
taking the forward step. The human bipedal locomotion can
also be divided into motions in three perpendicular planes
viz. Sagittal plane, the Coronal or Frontal plane, and the
Transverse Plane.

As dynamic effects in frontal and transverse planes are
comparatively small as compared to that of the sagittal plane,
only sagittal plane modeling of human gait is considered
for this work [7]. As the time during DSP is quite small
compared to SSP, it can be assumed that model instantly
starts another SSP after completing the previous one [8], and
only single support phase modeling has been considered in
the present work. Since the angular variation of the knee
during stance phase is quite small [9], the motion of each
leg in its stance phase can be modeled as the motion of an
inverted pendulum; while the motion in the swing phase can
be modeled as the motion of a triple pendulum. Figure 1
shows the simplified model of human gait.

The primary objective of any wearable robotic device is
to assist the user and follow the motion trajectory and not
hamper the movements. In this regard, one of the simplest
cases of exoskeleton model will be having its joints perfectly
aligned with the human body. In such a case, a combined
human and exoskeleton system will have the same dynamics,
and it can be treated as one single system. It is assumed that
enough friction is present so that slipping does not occur
and thus the stance leg can be considered to be fixed to the
ground. For the sagittal plane motion, the hip joint is nearly
in-line with the center of mass (COM) of the body. Thus
the pivot point for the triple pendulum can be approximately
taken at the same location as that of the COM.

Such a system has four degrees of freedom viz. Stance
leg angle (φ), a Hip joint of swing leg (θ1), Knee joint of
swing leg (θ2), and Ankle joint of swing leg (θA). Kinematic
model of the system is derived using the forward kinematic
approach. Ankle joint of stance leg, which is fixed to the
ground is taken as the origin of the global coordinate system.
Position vectors of COM of each link with respect to global
coordinates are shown from (1) to (7). Here, rOi denotes

Fig. 1: Kinematic Model

coordinates of i concerning O (Origin at the ankle of stance
leg) in the global coordinate reference frame.

roc1 = [0, 0, 0]
T (1)

roc2 = Ro
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Ro
1, R

1
2, R

2
3, and R3

4 are transformation matrices which are
shown in (8) to (11), where Ri

j denotes transformation matrix
from jth reference frame to ith reference frame.

Ro
1 =

 cos(φ) −sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

 (8)

R1
2 =

 cos(θ1 − φ) −sin(θ1 − φ) 0
sin(θ1 − φ) cos(θ1 − φ) 0

0 0 1

 (9)



R2
3 =

 cos(θ2 − θ1) −sin(θ2 − θ1) 0
sin(θ2 − θ1) cos(θ2 − θ1) 0

0 0 1

 (10)

R3
4 =

 sin(θA − θ2) cos(θA − θ2) 0
−cos(θA − θ2) sin(θA − θ2) 0

0 0 1

 (11)

The governing dynamic equation for the system can be
derived by defining the Lagrangian of the system. The kinetic
energy of each rigid limb can be written as the sum of its
translational and rotational kinetic energies.

Ti =
1

2
miV

T
ci Vci +

1

2
ωT
ciIciωci (12)

Where, Vci , ωci , and Ici are the velocity of center of mass,
angular velocity and moment of inertia relative to center of
mass respectively in global coordinate reference frame. Then,
the equations of motion for the system can be written as:

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

+
∂P
∂q̇i

=�i (13)

where, L = KE − PE is the Lagrangian of the system,
q = [φ, θ1, θ2, θA]

T are the generalized coordinates, �i is
the corresponding external torque acting on the system, and
Ri = − ∂P

∂q̇i
is the dissipative force present at the joint qi. As

the system has low velocity, linear damping of the formRi =
−ciq̇i is considered, where ci is the damping coefficient.

Solving (13) results in the system of 2nd order non-
linear differential equations which can be expressed in matrix
notation as:

ø = H(q)q̈ + C(q̇,q)q̇ + G(q)

or, ø = H(q)q̈ + G(q̇,q)
(14)

where H corresponds to inertia term, C is the Coriolis
component, and G is body force term.

III. FEEDBACK CONTROL

The problem of designing the control law for an ex-
oskeleton system can be described as the trajectory follower
problem. The system should follow the reference trajectory
of human walking to assist the user. Reference trajectory
for each degree of freedom in the model is generated using
ADAMS based human body simulator LifeMOD, developed
by Lifemodeler Incorporated, U.S.A. Human body model
named ”Casey” is selected as the reference model for gait
analysis. The physical details of the model are listed in
Table I.

TABLE I: Physical Details of the ”Casey” model

Mass of Thigh 10.5 kg
Mass of Shin 2.8 kg
Mass of foot 1 kg

Mass of Upper Body 43 kg
Total Weight 71 kg

Length of Thigh 0.45 m
Length of Shin 0.45 m
Length of foot 0.15 m
Total Height 1.70 m

A. Linearization of system model

System equations in (14) are non-linear in nature and must
be linearized before applying linear controller. Defining the
state variable as x = [qT , q̇T ]T and rearranging the terms
results in state space form as shown in (15).

ẋ =

[
q̇

H(q)−1(ø− G(q̇,q))

]
or, ẋ = f(x,u)

(15)

It can be linearized about the operating point us-
ing Taylor series. Let (x0(t),u0(t)) be a generalized
point on reference trajectory, then defining (x̄(t), ū(t)) =
(x(t)− x0(t),u(t)− u0(t)) as error variable, linearized
system can be written as [10]:

˙̄x(t) = A(t)x̄(t) + B(t)ū(t)

where, A =

[
0 I

H−1[∂H∂xH
−1(G − ø)− ∂H

∂x ]

]
and, B =

[
0
H−1

] (16)

At a particular instant of time, (16) shows a linear re-
lationship between ˙̄x and (x̄, ū) with constant coefficients.
As the system is highly unstable, it is required to design an
optimal feedback controller for the system which guarantees
the stability of the closed-loop system. Linear Quadratic
Regulator(LQR) is a well known optimal controller for a
linear system. Hence, LQR based feedback control is applied
to the system.

B. LQR Control

As the reference point, itself is time-varying, gain schedul-
ing approach is used which uses a family of linear controllers
around different operating points. For implementing the
linear optimal controller, LQR, a cost function J is defined
such that minimizing the cost function results in trajectory
stabilization.

J =
1

2

∞∫
0

[x̄(t)TQ x̄(t) + ū(t)TR ū(t)]dt (17)

Q and R are weighting factors associated with state cost and
input cost respectively. Q should be a positive semidefinite



Fig. 2: Control flow of the system

and R should be a positive definite matrix. Feedback control
law which minimizes (17) is given by

ū(t) = −K(t)x̄(t)

where, K(t) = R−1B(t)TS(t)x̄(t)
(18)

S is the solution of Algebraic Riccati Differential Equa-
tion. The control flow diagram is shown in figure 2.

Taking both Q and R as identity matrices, closed loop
results are shown in figure 3.

(a) Stance Leg (b) Hip Joint of Swing Leg

(c) Knee Joint of Swing Leg (d) Ankle Joint of Swing Leg

Fig. 3: Angular Displacement after feedback control

The normalized RMS error for φ, θ1, θ2, and θA are
0.79%, 0.66%, 7.38%, and 11.44%. Although the system is
stabilized, but at some points non-linearity of the system is
very large for the linear controller. It shows that the controller
with identity weight matrix in the present case is not robust
enough and the controller requires a different weight matrix.

IV. OPTIMAL WEIGHTING MATRICES

Results of the closed-loop system show that instead of
penalizing each variable equally by taking an identity matrix,
the controller requires different weighting factor for each
variable. Generally, Q is taken as Identity matrix and R is
varied by trial and error. In the present work, an optimization
problem is formulated to determine the optimal R matrix to
minimize Root Mean Square error of each degree of freedom
simultaneously.

For the optimization problem, mathematical relations be-
tween matrix elements and normalized RMS error of an-
gular displacements are the objective functions which are

to be minimized. As no direct mathematical relationship is
present, a regression model is used to obtain the approximate
functions.

A. Design of Experiment

Design of experiments (DOE) has been used to study the
effect of independent variables on the output in a controlled
experiment. It involves identifying the independent variables
that affect the experiment and then examining their effects
on a dependent variable or response. The tests are performed
using the Box−Behnken (BB) design of response surface
methodology (RSM) as it carries out ’non-sequential exper-
iments with fewer design points’ [11]. The BB design needs
only three levels for an experiment since no points lie at the
vertices of the experiment region. Thus, it assists in the better
estimation of the first and second-order coefficients even with
fewer design points. Thus for the same number of factors,
BB design can be less expensive than central composite
design (CCD), and it has also been proven useful if the safe
operating zone is known for the process. For analyzing the
experimental data, Design Expert 10.0 software is used. It
estimates a suitable mathematical relationship between input
and output parameters using regression analysis.

Generally, a second-order model is employed in response
surface methodology of a form as shown in equation 19.

y = β0+β1a1+β2a2+β12a1a2+β11a
2
1+β22a

2
2+ ε (19)

where, y is the output variable, (a1, a2) are the input
parameters, (a21, a

2
2) and (a1a2) are the square and interac-

tion terms of parameters respectively. β′s are the unknown
regression coefficients and ε is the error.

R =


x1 x2 x3 x4
x2 x5 x6 x7
x3 x6 x8 x9
x4 x7 x9 x10

 (20)

For the optimization problem, R is taken as a symmetric
matrix having four diagonal and six off-diagonal independent
variables (x1, x2, ..., x10). Normalized RMS error for each
joint angle are the dependent variables. Simulations are
performed to examine the effect of the matrix in 20 on
the output. For designing the experiment, to ensure positive
definiteness of the matrix, diagonal elements are given low
and high values 5 and 10 respectively, and off-diagonal
elements are given low and high values 0 and 2 respectively.
The experimental data collected according to BoxBehnken
design are analyzed to establish the relation between inde-
pendent input parameters and the responses using analysis
of variance (ANOVA). It is observed that RMS error for φ
does not vary much and is always < 1%. Thus, RMS errors
for θ1, θ2, and θA are taken as three objective functions for
the multi-objective optimization problem. The coefficient of
determination (R2) and adjusted R2 values are 0.9756 and
0.9668 for R1, 0.9995 and 0.9993 for R2, and 0.9987 and
0.9983 for R3 respectively.



B. Genetic Algorithm

For the optimization problem, elements of matrix in (20)
are taken as independent parameters which are to be opti-
mized. The requirement on R is that it should be a positive
definite matrix. Thus following constraints are defined for
the problem:

x1 > 0∣∣∣∣x1 x2
x2 x5

∣∣∣∣ > 0∣∣∣∣∣∣
x1 x2 x3
x2 x5 x6
x3 x6 x8

∣∣∣∣∣∣ > 0

det(R) > 0

(21)

Variable bounds are defined in (22).

0.001 ≤ x1 ≤ 10

0 ≤ x2 ≤ 10

0 ≤ x3 ≤ 10

0 ≤ x4 ≤ 10

0.001 ≤ x5 ≤ 10

0 ≤ x6 ≤ 10

0 ≤ x7 ≤ 10

0.001 ≤ x8 ≤ 10

0 ≤ x9 ≤ 10

0.001 ≤ x10 ≤ 10

(22)

The formulation shows that the objective function is
nonlinear. As a result, evolutionary multi-objective function
technique is used for optimization. Non-dominated sorting
genetic algorithm-II (NSGA-II) [12] technique is used for
optimization of the objective functions and to obtain the
optimal values of the variables (x1, x2, ..., x10). The non-
dominated solution between R1, R2, and R3 is shown in
figure 4.The parameters for NSGA-II are as follows:

Population size = 200,
Number of generations = 500,
Crossover probability (Simulated Binary Crossover) = 0.9,
SBX index = 10,
Mutation (Polynomial mutation) probability = 1/number of
variables,
Mutation index = 50

Figure 4 shows the Pareto optimal solution for the three
objective functions. It can be observed that the objective
functions are conflicting to each other as at the minimum
point of one error; the other corresponding error gets maxi-
mized. Table II shows the values of objective functions with
corresponding variable values.

R =


0.506 0.002 1.441 1.692
0.002 0.22 0.004 0.099
1.441 0.004 9.999 2.769
1.692 0.099 2.769 9.272

 (23)

Fig. 4: Non-dominated solutions

One random set of optimal values are taken from Table II
(6th column of data) and the system is simulated. R matrix is
shown in (23) and system responses in figure 5. Normalized
RMS error obtained for φ, θ1, θ2, and θA are 0.7%, 1.17%,
2.98%, and 2.92% respectively. It is observed that the system
error responses from the computation and those obtained
from optimization are close to each other. An explanation
for the difference in the results is that the relation between
input and output parameters are obtained from the regression
analysis and the estimated model does not necessarily fit
sampled data exactly. The model can be improved with
further research to get more accurate results.

(a) Stance Leg (b) Hip Joint of Swing Leg

(c) Knee Joint of Swing Leg (d) Ankle Joint of Swing Leg

Fig. 5: Angular Displacement after feedback control using
optimal value of R

V. CONCLUSION

In the present work, a simplified model of human gait
has been developed using mathematical models of inverted
and triple pendulums. Reference trajectory for each degree of



TABLE II: Objective function and parameter values

R1 0.555 0.802 0.764 0.355 0.105 0.54 0.429 0.019 0.434 0.241 0.021
R2 4.335 4.638 4.653 4.721 5.016 4.631 4.793 5.563 4.821 4.775 5.545
R3 7.611 0.178 0.252 4.074 5.486 1.841 2.606 8.206 0.840 5.036 8.164
x1 0.445 0.362 0.355 0.106 0.124 0.506 0.079 5.344 0.296 0.109 5.344
x2 0.001 0.000 0.000 0.000 0.000 0.002 0.001 0.018 0.000 0.001 0.003
x3 1.021 1.548 1.548 0.604 0.569 1.441 0.637 3.456 1.561 0.450 3.335
x4 1.943 1.127 1.119 0.560 0.040 1.692 0.208 7.068 0.672 0.554 7.143
x5 9.927 0.134 0.133 1.811 1.195 0.220 0.760 0.056 0.039 1.793 0.005
x6 1.741 0.283 0.141 0.084 0.002 0.004 0.019 0.001 0.086 0.019 0.001
x7 0.026 0.036 0.034 1.883 2.182 0.099 1.673 0.003 0.043 2.406 0.003
x8 9.992 9.995 9.967 9.986 9.997 9.999 9.998 9.999 9.874 9.991 9.890
x9 1.291 1.725 1.814 2.705 3.863 2.769 2.778 3.027 2.743 3.246 2.757
x10 9.968 9.488 9.492 9.798 6.047 9.272 9.714 9.759 6.423 9.973 9.969

freedom was generated using LifeMOD. Optimal feedback
controller (LQR) has been used after linearizing the system
about reference trajectory. It was observed that appropriate
selection of weight matrix in the cost function is vital in
minimizing the error for a trajectory follower problem. For
determining optimal weight matrix, an optimization problem
is formulated to minimize the root mean square error of the
system variables. Weight matrix R was taken as a symmetric
matrix having 10 independent elements which are to be
optimized. It has been observed that the objective functions
are conflicting. R1 is conflicting with both R2 and R3,
but R2 and R3 are not conflicting with each other. As no
direct mathematical relation was present between weight
matrix elements and system error, a 2nd order polynomial
relation was developed using regression analysis which can
account for small error in computed and optimization data.
Nevertheless, the optimal solution shows quite good results
for trajectory follower problem.
The future work can be extended by formulating a more
realistic mathematical model considering external distur-
bance and contact constraints. The triple pendulum model as
considered in this work will play a crucial role as foot will
be subjected to ground reactions and for zero moment point
(ZMP) stability in 3-D motion. Since, the walking pattern
of each user differs slightly, hence instead of an optimal
controller, an adaptive optimal controller can be applied.
Also, the regression model for weight matrix optimization
can be improved to obtain more accurate optimization results.
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VI. SUPPLEMENTARY MATERIAL
A. Kinetic and Potential energy of the system

The Lagrangian of the system L = KE − PE requires
mathematical expression of kinetic and potential energies
of the system. The kinetic energies for individual links are
shown here, where corresponding link numbers are shown in
figure 1.

KE1 = 0 (24)

KE2 =
m2

24

(
b2 + 4l1

2
)
φ̇2 (25)

KE3 =
m3

24

(
b2 + 12l1

2 + 12l1l2 + 4l2
2
)
φ̇2 (26)

KE4 =
m4

2
(l1 + l2)

2
φ̇2 (27)

KE5 =
m5

8

(
2 l1 cos(φ) φ̇+ 2 l2 cos(φ) φ̇− l2 cos(θ1) θ̇1

)2
+
m5

8

(
2 l1 sin(φ) φ̇+ 2 l2 sin(φ) φ̇− l2 sin(θ1) θ̇1

)2
+
m5

24

(
b2 + l2

2
)
θ̇1

2

(28)

KE6 =
m6

8

(
(l1 cos(θ2) θ̇2 − 2 l1 cos(φ) φ̇− 2 l2 cos(φ) φ̇

+2 l2 cos(θ1) θ̇1))
2 +

m6

8

(
(l1 sin(θ2) θ̇2 − 2 l1 sin(φ) φ̇

−2 l2 sin(φ) φ̇+ 2 l2 sin(θ1) θ̇1))
2 +

m6

24

(
b2 + l1

2
)
θ̇2

2

(29)

KE7 =
m7

8

(
l3 cos(θA) ˙θA + 2 l1 cos(θ2) θ̇2 + 2 l2 cos(θ1) θ̇1

−2 l1 cos(φ) φ̇− 2 l2 cos(φ) φ̇
)2

+
m7

8

(
l3 sin(θA) ˙θA

+2 l1 sin(θ2) θ̇2 + 2 l2 sin(θ1) θ̇1 − 2 l1 sin(φ) φ̇

−2 l2 sin(φ) φ̇
)2

+
m7

24

(
h2 + l3

2
)

˙θA
2

(30)

And the potential energies for individual links.

PE1 = 0 (31)

PE2 = (g l1m2 cos(φ))/2 (32)

PE3 = gm3 cos(φ) (l1 + l2/2) (33)

PE4 = gm4 cos(φ) (l1 + l2) (34)

PE5 = −gm5 ((l2 cos(θ1))/2− cos(φ) (l1 + l2)) (35)
PE6 = −gm6(l2 cos(θ1)− cos(φ) (l1 + l2)

+(l1 cos(θ2))/2)
(36)

PE7 = −gm7(l2 cos(θ1)− cos(φ) (l1 + l2) + l1 cos(θ2)

−(l3 cos(θA))/2)
(37)



B. Objective Functions
The mathematical relations for the three objective func-

tions (R1, R2, and R3) are obtained through regression
analysis. R1 corresponds to Normalized RMS error for θ1,
R2 for θ2, and R3 for θA.

R1 = 0.716 + 0.024x1 + 0.312x2 − 0.065x3 + 0.095x4

+0.087x5 + 0.296x6 − 0.106x7 − 0.139x8 + 0.14x9

−0.021x10 − 0.03x1x2 + 0.009x1x3 − 0.011x1x4

−0.039x2x3 + 0.032x2x4 + 0.018x2x5 + 0.017x2x6

−0.025x2x7 + 0.024x2x9 − 0.013x2x10 − 0.022x3x4

−0.01x3x5 + 0.016x3x7 + 0.011x3x8 − 0.020x3x9

+0.011x3x10 + 0.018x4x5 − 0.006x4x8 + 0.022x4x9

−0.011x4x10 − 0.01x5x6 − 0.014x5x8 + 0.026x5x9

−0.011x5x10 − 0.015x6x8 + 0.01x7x8 − 0.024x7x9

−0.021x8x9 + 0.008x8x10 − 0.02x9x10 + 0.024x22

+0.008x25 + 0.009x28 + 0.024x29 + 0.003x210
(38)

R2 = 7.354 + 0.426x1 + 0.097x2 − 0.009x3 − 0.272x4

−0.003x5 − 0.04x6 + 0.007x7 − 0.335x8 − 0.049x9

−0.037x10 + 0.009x1x2 + 0.009x1x3 + 0.014x1x4

+0.001x1x5 − 0.004x1x7 + 0.003x1x8 − 0.005x1x9

+0.001x1x10 − 0.007x2x5 + 0.016x2x7 − 0.003x2x8

+0.005x2x9 + 0.01x3x4 − 0.004x3x5 − 0.015x3x6

−0.004x3x8 − 0.004x3x10 − 0.003x4x8 + 0.009x4x10

+0.004x5x9 − 0.001x5x10 + 0.006x6x7 − 0.003x6x8

−0.007x6x9 − 0.006x8x9 − 0.002x8x10 + 0.003x9x10

−0.019x21 − 0.024x22 + 0.014x23 − 0.01x24 + 0.024x26

+0.013x28 + 0.022x29 + 0.002x210
(39)

R3 = 14.893 + 0.973x1 + 2.919x2 − 1.124x3 + 1.03x4

+1.615x5 − 0.358x6 + 0.588x7 − 1.463x8 + 1.607x9

−1.485x10 − 0.092x1x2 + 0.089x1x3 − 0.071x1x4

+0.075x1x5 + 0.022x1x7 − 0.016x1x8 + 0.018x1x9

−0.021x1x10 − 0.029x2x5 + 0.048x2x6 − 0.05x2x7

−0.066x2x10 − 0.054x3x4 − 0.143x3x6 + 0.073x3x7

+0.11x4x6 − 0.08x4x7 − 0.015x4x8 − 0.056x5x7

−0.035x5x10 + 0.045x6x8 − 0.024x6x10 − 0.015x7x8

−0.11x8x9 + 0.057x8x10 − 0.065x9x10 − 0.049x21

−0.073x22 + 0.092x24 − 0.068x25 + 0.084x27 + 0.033x28

+0.162x29 + 0.059x210
(40)
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