
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Animal Behavior Prediction with Long Short-Term

Memory

Henry Roberts

Department of Computer Science

University of South Alabama

Mobile, USA

htr1721@jagmail.southalabama.edu

Aviv Segev

Department of Computer Science

University of South Alabama

Mobile, USA

segev@southalabama.edu

Abstract— A foundational step in the study of any animal is the

establishment of an accurate behavioral model. Building a model

that is capable of defining and predicting an animal’s behavior is

critical to advancing ethological theory and research, however

many animal models fail to be sufficiently thorough or often do not

exist at all. Great pools of data are available for improving these

models through recorded video of animals posted on video hosting

sites throughout the internet, however these sources are largely

left unused due to their sheer quantity being too much for

researchers to manually observe and annotate. This paper

proposes a method for efficiently converting video of animals at

any length into models capable of making accurate behavioral

prediction. This predictive model is developed through a data

processing pipeline merging an ensemble meta-algorithm for

behavior classification with a long short-term memory network

for temporal pattern recognition and prediction. The application

of this pipeline produced results with a higher degree of predictive

accuracy compared to more traditional autoregressive techniques.

These findings suggest the method has significant potential as a

tool for efficiently developing new models and findings in the study

of animal behavior.

Keywords—LSTM, ARIMA, Pose estimation, Behavior

modelling, Behavior prediction

I. INTRODUCTION

The cataloguing and quantitative measurement of animal
behavior has been a staple of ethology and behavioral ecology
since the fields’ earliest conceptions in the 19th century [1].
Recent advances in artificial intelligence have further bolstered
these fields with the development of machine vision and
machine learning based tools for analyzing animal behavior in
video [2]. Now with these modern techniques biologists have the
opportunity to track and derive new information from animal
behavior at a rate faster than ever before. The field of ethology,
the study of animal behavior, is no stranger to these modern
machine learning techniques with developments like Mathis et
al.’s creation of DeepLabCut using deep, residual learning for
cutting-edge animal pose estimation [3], or Charpentier et al.’s
work using deep neural networks for face recognition in
Mandrills [4]. Nor is the field lacking in predictive models, as
explained by animal behaviorist Dugatkin in answering why
mathematical theories play such a large part in ethology,
mathematical models of behavior sometimes produce
unexpected predictions. And these predictions can serve as a

jumping-off point for empirical tests in ethology. Or if a model
predicts correctly with one animal system but not others, it may
produce new insights in the differences between species [5].

Many mathematical models have been made in the
prediction of organism behavior, and numerous studies have
produced developments in their classification and tracking. And
yet, comparatively few have sought to use these methods for
producing data for the implementation of behavior prediction
using modern time series analysis-based models.

We seek to evaluate the potential for building a functional
model for the prediction of an organism’s behavior through the
training of Long Short-Term Memory (LSTM) networks on
observational data of an organism’s behavior in video. The
scope of this evaluation entails establishing whether such
networks can provide accurate predictions of an organism’s
future behavior based on training on past behaviors and relevant
spatial information. After making its predictions for increasingly
large lengths of time-steps ahead, we calculate its accuracy in
terms of mean squared error and compare it to the results of a
statistical analysis model that is made for predicting on time-
series data and tasked with the same goal.

This paper aims to contribute to the discussion and
development of predictive organism behavioral models using
modern machine learning techniques. And in order to do so we
propose a potential pipeline for efficiently converting animal
video and tracking data to an optimal predictive model.

In Section 2 we aim to contribute to the discussion of
behavioral modeling by highlighting recent work carried out
related to the field. Section 3 details our proposed predictive
behavior pipeline and steps through each element involved in its
creation and evaluation. Section 4 details the evaluation itself:
the dataset used, the predictions made, the results of our work,
and discussion on its implications. Lastly Section 5 describes
our conclusions on the study and details how we will build upon
it in the future.

II. RELATED WORK

The primary focus of our study is the evaluation of deep
learning and machine vision integration to form an efficient
pipeline for analyzing and predicting organism behavior.
Though the studies on machine vision based prediction

modeling in behavioral ecology are limited, we do see a strong
contribution from Rosenthal et al. [6] in their work in which they
evaluate the complex networks of interaction between schooling
fish. This is accomplished by tracking their body movements
and locations in the school, calculating the field of vision for
every fish within it, and using this data to find the connection
between sensory input from other members of the school and
their own motor response while collectively evading threats.
Building out these connections as a functional model of
networked behavior allows them to analyze this hidden
communication within the group and accurately predict complex
changes in the behavior of the school before they occur [6].
While aligning with our own study’s goal of predicting organism
behavior before it occurs, their methodology approaches the
analysis from the bottom up, functionally modelling the
individual experience of each fish in relation to its environment.
In our approach we take a comparatively top down view,
analyzing the animal’s behavior as an external observer and
training a time-series analysis model for prediction based on
those observations.

The application of machine learning techniques in
identifying pose in video has been a fast evolving field,
developing rapidly over the past six years [7]. It began with
DeepPose, an application of deep learning to human pose
estimation in two dimensions [8]. Since then numerous other
deep-learning pose estimators have followed, including
frameworks using motion features [9], integrated training using
a convolutional network and a graphical model [10], using
convolutional networks for advancing object localization [11],
establishing a benchmark for pose estimation and tracking [12],
and human pose estimation with stacked hourglass networks
[13]. DeeperCut by Insafutdinov et al. marked a milestone in
producing accurate multi-person pose estimation using graph
cutting guided by deep learning based body part detectors [14].

The first powerful example of machine vision for ethology
is the aforementioned DeepLabCut tracking software [3].
Developed in part through the benchmarking of a selection of
the features used by DeeperCut, this 2D and 3D pose tracking
tool can be applied to a wide range of organisms in a multitude
of different environmental contexts. From a horse to a fly to just
the limbs of a mouse, DeepLabCut leverages the power of deep,

residual networks to maintain accurate pose tracking on them
all. The inclusion of DeepLabCut in a future predictive pipeline
could lead to a greater degree of generalizability in animal
tracking. However, it differs from our proposed predictive
behavior pipeline in that it stops at the pose tracking. Any
behavioral annotation must be carried out manually or using
external software.

 In the proceeding section we will detail our emphasis on
behavioral classifier generation and automated behavior
labeling for the production of behavioral time-series data.

III. PREDICTIVE BEHAVIOR PIPELINE

In this study we implemented an integration of machine
learning techniques and evaluated their potential as a pipeline
for predicting animal behavior. The components of this pipeline
are displayed in Fig. 1. The first stage of this framework utilized
a type of machine learning meta-algorithm called AdaBoost, or
adaptive boosting, used in combination with decision stumps as
weak learners. We first manually annotated the behavior of our
subjects frame by frame within a small portion of our pose-
tracked video based on established ethograms. After this
labeling we then extract the features related to each frame of
video and the subjects within, building decision stump classifier
functions. The adaptive boosting algorithm prunes for the
resulting functions that are most accurate in replicating the
manually labeled frames of behavior. The end product is a
classifier for each labeled behavior that is then applied to the
remaining unlabeled footage, automatically annotating the
behaviors exhibited therein. Once this was done, the behavioral
annotations and classifier function results were paired frame by
frame to build a behavioral dataset.

Using this dataset, we were able to integrate the automated
classification methodologies of the adaptive boosting algorithm
with the forecasting power of Long Short-Term Memory
networks. This allowed us to pipeline from unlabeled video of
an animal as input to a predictive model of the animal’s behavior
as output. The LSTM network is an ideal architecture for this
process as it was made for handling the temporal element of our
behavioral dataset and could deal with the vanishing gradient

Fig. 1. Flowchart displaying each step of the predictive behavior pipeline.

problem [15], [16] typically seen in other recurrent neural
networks.

 Lastly, we implemented an autoregressive integrated
moving average (ARIMA) model to analyze and predict using
the generated behavioral annotations. The ARIMA model is
well suited for fitting temporal data and forecasting future steps
in time series, so it was a good fit for our behavioral data. As a
well-established form of time series analysis, the ARIMA
model’s predictions were then compared against the LSTM’s to
evaluate the network’s predictive significance [17]–[19].

A. Adaptive Boosting

The term “boosting” refers to a meta-algorithmic approach
to producing accurate classifications using the selective
combination of several less accurate classifiers, commonly
called weak learners [20]. The basic form of a boost classifier is
as follows:

FT(x)= ∑ f

t
(x),

T

t=1

   (1)

in which object x is taken as a input to each weak learner
function ft which then outputs a value representing the
determined class of the object [21]. An output hypothesis, h(xi)

is made for each sample of a training dataset by every weak
learner. Every t iteration the coefficient αt is applied to a chosen
weak learner in order to make the resulting classifier’s sum
training error Et minimal as shown below:

In the above equation Ft-1(x) represents a classifier that was
boosted in the prior t iteration, while E(F) is the error function
being implemented [21]. For each of these iterations a weight
wi,t equaling the error is assigned to the sample. Here αth(x) =
ft(x), which is the weak learner function being evaluated for
inclusion in the finished boosted classifier.

In this study a form of boosting called Gentle AdaBoost is
used which differs from other boosting algorithms in that its
weak learning functions ft are bounded in their step size rather
than reducing the greatest amount of test error at each step [20].
The weak learners are picked to minimize:

 ∑ 𝑤𝑡, 𝑖(𝑦𝑖 − 𝑓𝑡(𝑥𝑖))
2

i

,   (3)

without the minimizing coefficient αt being used. The end result
is a fast and highly generalizable boosting algorithm that is well
suited for efficiently classifying through large datasets [20].

B. LSTM

Traditional artificial neural networks rely on a feedforward
approach in which information is only passed forward for

decision making [22]. Recurrent neural networks (RNN) differ
in that they implement feedback, enabling many cycles of
information processing. This looping architecture allows for the
network to retain information from previous input data, allowing
it to incorporate time as a dependent factor in the information
that it processes [23]. Most of these networks, however, suffer
from the vanishing or exploding gradient problem in which the
error signal that shifts neuron weights drops to very small values
or expands to extremely large values. Long Short-Term Memory
networks are a form of RNN that overcome this problem through
the use of additional memory block architecture featuring
constant error carousels (CEC) and forget gates [22]. This ability
to retain backpropagated errors through layers of the network
without vanishing or exploding gradients makes the LSTM
model suitable for recognizing the connections of events that
happen upwards of thousands of time steps separate from each
other [22].

The hidden layer of the LSTM is composed of memory block
units that contain memory cells and a pair of gating units that
multiplicatively influence all inputs and outputs to the memory
cells in their block. The memory cells within each block contain
CEC units and their activation is called the cell state. To prevent
the vanishing error problems when there is a gap in input or error
signals, the CECs are able to keep the local error backflow
constant, showing no exponential growth or rapid shrinking. If
the cell state is near zero then the gates are closed, protecting the
memory block from noise and keeping the rest of the network
unaffected [24].

Each step of the LSTM is evaluated in terms of units of
discrete time t and entails a forward pass and backward pass.
The forward pass updates every memory block and the
backward pass recomputes the error function for all the weights
[24]. The activation for each input gate yin and output gate yout is
stated below.

 𝑛𝑒𝑡outj
(t)= ∑ woutjm

ym(t-1)

m

, (4)

youtj(t)=f

outj
(netoutj

(t)) , (5)

 netinj
(t)= ∑ winjm

ym(t-1)

m

, (6)

yinj(t)=f

inj
(netinj

(t)) . (7)

Here f is a range (0,1) sigmoid function, m is the source unit
index, and v is the index of each memory cell within each
memory block j. The state of each memory cell sc(t) is computed
by a squashed, gated input to the prior time step sc(t-1) (t > 0):

 𝐸𝑡 = ∑ 𝐸[𝐹𝑡−1(𝑥𝑖) + 𝛼𝑡  ℎ(𝑥𝑖)].

𝑖

  (2)

 netcj
v(t)= ∑ wcj

vmym(t-1)

m

,  (8)

 scj

v(t)=scj
v(t-1)+yinj(t)g (netcj

v(t)) , (9)

with scj
v (0)=0. Here cj

v represents the memory cell of index

v for the memory block of index j. The gated input is squashed
by a (-2, 2) range, centered logistic sigmoid function g. Each cell
output yc is computed using the output squashing function h, a
centered sigmoid with range (-1,1), to squash each cell’s internal
state sc before multiplying it by the memory block’s output gate
activation yout [24]:

ycj

v

(t)=youtj(t)h (scj
v(t)) . (10)

Using a layered network topology with a standard input
layer, a hidden layer of memory blocks, and a standard output
layer, the formula for the output units k are:

 𝑛𝑒𝑡k(t)= ∑ wkmym(t-1)

m

,yk(t)=f
k
(netk(t)), (11)

in which m is the range of all units contributing to the output
units, i.e. the memory cells within the memory blocks in the
hidden layer and the input units [24]. The squashing function fk
is also a logistic sigmoid of range (0,1). From this base we can
then extend the LSTM model to use adaptive forget gates, which
implements both immediate and gradual resets of memory
blocks to zero as their contents grow out-of-date in the
processing of long time series data. This is done by replacing the
CEC constant weight of 1 with an adaptive forget gate activation
yφ. This gate activation is calculated as:

 𝑛𝑒𝑡φj(t)= ∑ wφ, m ym(t-1)

m

 ;  (12)

 y
φj(t)=f

φj
( netφj

(t)) . (13)

In this equation 𝑛𝑒𝑡φ𝑗 is the network’s input to the forget

gate. 𝑓φ𝑗
 is a squashing function using the logistic sigmoid with

range (0,1). The output  y
φj(t) then serves as a multiplicative

weight of the self-recurrent connection in the computation of the
state of each memory cell sc, with the revised equation (when t
> 0) as follows:

with 𝑠𝑐𝑗
𝑣 (0) = 0. The initial bias weights for the input gates

and output gates are negative and for the forget gates they are
positive. This means that the forget gate activation at the start of
the training phase will be nearly 1.0, making its output
equivalent to an LSTM memory cell without the forget gate
architecture. As the training continues it then learns to reset
memory blocks to zero [24].

This ability of the LSTM model to modulate the impact of
data moving through its cells makes it apt for the processing and
prediction of semi-stochastic data over both small and large
quantities of time-steps. To that end, the behavioral dataset
prepared using the gentle adaptive boosting algorithm makes for
an ideal fit in the model’s architecture. Preparing the data for
multi-step forecasting allowed us to design an LSTM capable of
predicting many frames into the future from any starting set of
time-steps. This preparation entailed restructuring the dataset of
behavior annotations such that for each time-step in the dataset,
the behavior classified at that timestep was represented as an
array of future behaviors from that point. In this preparation, the
length of the array determines the number of frames forward the
LSTM will output in its predictions.

3.3 Autoregressive Integrated Moving Average Model

Having an established model prepared for time-series
statistical analysis ensured that after training and testing the
LSTM network we were able to evaluate its significance as a
tool for behavioral prediction. The autoregressive integrated
moving average (ARIMA) model was selected based on our
need to analyze and forecast from non-stationary time-series
behavioral annotations [19].

The ARIMA model predicts future points in a dataset by
applying linear functions between random error and recent prior
points in time. The equation for this application is:

y
t
=θ0+ϕ

1
y

t-1
+ϕ

2
y

t-2
+⋯+ϕ

p
y

t-p

+εt-θ1εt-1-θ2εt-2-⋯-θqεt-q

(15)

in which 𝑦𝑡 is the value at the given time-step t and ε𝑡 is the
respective random error. p and q are integers that serve as the
orders of the model and the parameters are ϕ𝑖(𝑖 = 1,2, … , 𝑝)
and θ𝑖(𝑗 = 0,1,2, … , 𝑞) [17], [19]. Using an automatic
optimization tool in python we found optimal parameters for the
ARIMA model fit to the behavioral annotations. From there we
made predictions of length equivalent to the LSTM model’s and
found the mean squared error (MSE) for both sets of predictions.
Comparing these MSE values we described their differences,
distributions, significance in terms of Pearson’s correlation [25]
and effect size in terms of Cohen’s d [26]. As an effect size,
Cohen’s d gives the standardized mean between two datasets. It
is found as the difference between each dataset’s mean values
divided by a standard deviation of the combined data.

IV. EXPERIMENTAL EVALUATION

We processed video and tracking data in JAABA, the Janelia
Automatic Animal Behavior Annotator. JAABA is a software

scj

v(t)= y
φj(t) scj

v(t-1)+yinj(t)g (netcj
v(t)) , (14)

implementation of adaptive boosting built for this task, using
animal behavior data prepared by the Branson lab at HHMI
Janelia Farm [27]. Combining the annotated behaviors and the
results of the classifier functions we then built an LSTM
network to train on the data and make future behavior
predictions. These results were then compared to results from a
standard predictive model to evaluate their significance.

A. Data Collection

The dataset used in this experiment was made by the
Branson lab and the Janelia Farm Fly Olympiad Team for work
on a neural activation screen of the Rubin GAL4 collection [27].
The data consists of two files. The first is a 30 frame-per-second
video of 10 male and 10 female adult Drosophila melanogaster
exploring a fly bowl. This video is comprised of 23,972 frames
total. The second is a .mat file containing pre-computed
trajectories of each fly in a JAABA compliant format [27].

B. Adaptive Boosting & JAABA

We selected JAABA, for executing the first stage of the
processing pipeline. Many applications have been developed for
the purpose of tracking the behavior of animals observed in
video. One commonly shared drawback with these programs is
that they rely exclusively on the manual input of observed
behavior at each frame of video. JAABA overcomes this
limitation using an implementation of the aforementioned
adaptive boosting algorithm called Gentle AdaBoost [27].

Feature sets are created within JAABA after manually
annotating the behaviors exhibited in a small portion of frames.
These feature sets are used by decision stump classifiers to
relabel the behaviors that were manually annotated. The
adaptive boosting algorithm combines the most accurate

amongst these in order to produce behavior classifiers that are
then applied to the full set of video frames.

 A visualized example of one such classifier can be seen in
Fig. 2. The strings in the right column are features relative to the
window view of the tracked subject. The decision stumps make
binary decisions based on threshold values for each window
feature. Decisions on features that align with the manually
labeled data receive weight to give them greater impact in the
cumulative classification decision. In Fig. 2 the classifiers are
listed in descending order, with the heaviest on top. The left
column in the figure visually represents the application of the
behavior classification across the full video based on each
window feature independently. In JAABA’s GUI the automated
behavioral labeling and the system’s confidence levels are
displayed to the user in a timeline view of the video’s frames
and the user can then correct and update the classifiers and their
automatic labeling. Through this iterative process users are able
to rapidly annotate thousands of frames of behavior with
minimal manual input [27].

C. Approach

We set out to evaluate the potential for behavior prediction
using a pipeline integrating the classifier generation techniques
of JAABA and the time series sensitive predictive potential of
LSTMs. By first processing trajectory tracked Drosophila
melanogaster video in JAABA we are able to generate
behavioral classifiers. The raw output of these classifier
functions is then paired with the automatically annotated
behavior of the Drosophila melanogaster for each frame of the
video. The resulting two-dimensional dataset is then divided into
training and testing data for an LSTM network. From here the
framework can be evaluated in terms of its accuracy in
predicting the future behavior of the fly at increasingly distant
lengths of frame. We then compare the MSE of the LSTM’s
predictions to the MSE of predictions from ARIMA, our
established statistical model for time series analysis.

While ARIMA and LSTM are both machine learning models
fit to process and make predictions on time-series data, their
structures differ significantly. ARIMA implements an
integration between autoregression and moving average models
to fit data and predict future time-steps. It evaluates each time-
step as the difference between the current and prior step. In
doing so it is able to make the data stationary for autoregression
and make predictions with its lagged values [18]. This contrasts
with the LSTM model, which fits its data and makes predictions
using deep learning. The model is an enhanced version of a
recurrent neural network in which constant error carrousels and
forget gates enable the network to account for contexts between
time-steps both near and far from each other[15], [28], [29].

D. Experiments

After loading the Drosophila melanogaster dataset into
JAABA, one fly was selected and its behavior was manually
labeled for 7000 frames. The annotated behaviors were based on
a common Drosophila melanogaster ethogram [30] and
featured: grooming, chase related movement, non-chase related
movement, and remaining still. With the 7000 manually
annotated frames JAABA then developed classifiers for each
behavior and annotated the behavior of the fly in the remaining

Fig. 2. A visual depiction of the behavioral classifier used for automatically

labeling when a fly is chasing another fly.

Decision stump classifiers Percentile of training data

frames. The results of the behavior classifier functions and the
annotated behaviors were then paired frame by frame and
exported as a single two-dimensional dataset.

This dataset was then prepared for use with the LSTM
network. To do this, the data was first loaded into a Jupyter
notebook running Python 3.6. The four annotated behaviors
were then integer encoded as 0, 1, 2, and 3. Both the integer
encoded behaviors and the classifier function results were then
standardized by scaling their values to a 0 to 1 range. From here
each frame in the dataset was paired with a sequence of values
representing the annotated behaviors for a given number of
frames in the future. This quantity of frames can be configured
in order to evaluate predictions closer or further out from any
given frame. For this experiment its maximum prediction range
was set to 300 frames out, which at 30 frames per second equals
10 seconds into the future. The standardized data was then
divided with an 80/20 split into training and testing sets.

A stacked LSTM model was then defined for use in multi-
step forecasting using the python deep learning API library
Keras running with TensorFlow. The model was comprised of
two stacked hidden layers of 100 units each and an output layer
that predicts a quantity of frames as configured in the data
preparation stage. In this case, 300. The model also uses a
configurable input shape for determining how many prior
frames it processes for each set of predictions. This was set to
120, meaning that it evaluates the 120 prior frames in the context
of the model in order to predict the subsequent 300 frames. Fig.
3 provides a visualization of this network’s arrangement. The
model was then compiled with the Adam version of stochastic
gradient descent for its optimizer and mean square error as its
loss function. We then fit the model to the training data,
undergoing 10 epochs with a batch size of 100, and evaluated its
predictive ability.

In order to evaluate the significance of the LSTM model’s
predictions, the autoregressive integrative moving average
model was then constructed. An auto ARIMA function was used
to find optimized (p, d, q) values of (1, 1, 2), after which the
model was trained on 80% of the JAABA behavior annotations.
Once fit, it stepped through each frame of the remaining test

data, predicting 300 frames out for each. These predictions were
compiled, and their mean squared errors were found. These were
then compared to the mean squared errors of the LSTM’s
predictions to evaluate the model’s relative predictive
significance. This also allowed us to analyze the LSTM’s
effectiveness in near future versus further out behavior
predictions.

E. Results and Discussion

As seen in Fig. 4, on average the LSTM network predicted
with a higher degree of accuracy than the ARIMA model. When
predicting behavior within two seconds of the current time-step,
i.e. from 1 to 59 frames out, the ARIMA model demonstrates
less error. After the 2nd second, however, and through to the
maximum 10 seconds, the LSTM model outperforms,
maintaining a consistently lower MSE.

The distributions of both models’ MSE scores were tested
and found to be non-normal. In Fig. 5 the distributions are
displayed as a box and whisker plot. The boxes cover the second
and third quartile values of each dataset, representing the middle
50% of each model’s respective MSE values. The line is each
set’s median. The whiskers indicate the scope of the data, with
the LSTM flier points representing outliers. From this depiction
we can see that the ARIMA model demonstrates greater
variability and overall error in its predictions compared to the
LSTM model, which is more consistent in its lower error rate
aside from a few even lower outliers. The Pearson’s correlation
between models was 0.984, suggesting a high degree of
correlation. The p value was 4.28e-58, implying significance in
the difference of the models’ predictions with considerable
certainty. Lastly, Cohen’s d was found to be 0.984, indicating a
large effect size.

These results supported our intuition that the LSTM
network’s ability to interpret context across large gaps in time
would make it uniquely suited for analyzing and predicting
natural processes like animal behavior. Though this study was
relatively small in scope, the results of its evaluation serve as a
positive indication for the expansion of our proposed pipeline
for efficiently building behaviorally predictive models from
video up.

Fig. 3. A visualization of the LSTM network built for this study. The first
layer receives the prior 120 time-steps, each containing 95 variables from the

JAABA produced behavioral dataset. The 100 unit hidden layers form the inter-

layer outputs. Finally, the dense layer outputs 300 sequential time-step

predictions.

Fig. 4. The mean square error of the LSTM and ARIMA models based on

the number of frames ahead they made predictions on. The ARIMA

model’s MSE surpasses the LSTM network at the 60th frame prediction.

V. CONCLUSIONS

In this study we proposed a pipeline approach for efficiently
developing predictive behavioral models using a confluence of
machine learning tools. We evaluated our model’s accuracy in
prediction and its significance against a much longer standing
time-series analysis statistical model. The results of testing our
proposed pipeline showed promise in that the LSTM network,
trained on the JAABA annotated frames of animal behavior and
classifier function results, was able to outperform the ARIMA
model, maintaining a significantly lower MSE for behavioral
predictions of the Drosophila melanogaster from three to ten
seconds into the future. Opportunities for leveraging the
advantage offered to us by big data are all around us. By
developing efficient pipelines and frameworks for working with
data of this scale and complexity we can collectively lower the
barrier to entry on the potential insights that await us.

To that end, we plan to take action in response to our pipeline
evaluation’s positive results. In future work we will expand the
scope of the study, aiming to fully generalize the requirements
for suitable animal video and examine additional opportunities
for automation in the workflow. We would also like to examine
opportunities to branch this pipeline into other domains where
temporal event analysis and prediction applied to large datasets
may yield useful results. Expanding the scope to make gestalt
predictions on the interactions within biological systems could
lay the way for new insights in their function. And increasing
the resolution on behavioral classification until it is near 1:1 with
the subject organism could lead to new potentials in biological
modeling.

REFERENCES

[1] Z. Magić, “The nobel prize in physiology or medicine 2009,”
Vojnosanitetski Pregled, vol. 66, no. 11. p. 861, 2009, doi:
10.1007/bf02867268.

[2] T. D. Pereira et al., “Fast animal pose estimation using deep
neural networks,” Nat. Methods, vol. 16, no. 1, pp. 117–125, 2019, doi:
10.1038/s41592-018-0234-5.

[3] A. Mathis et al., “DeepLabCut: markerless pose estimation of user-
defined body parts with deep learning,” Nat. Neurosci., vol. 21, no. 9, pp.
1281–1289, Sep. 2018, doi: 10.1038/s41593-018-0209-y.

[4] M. J. E. Charpentier et al., “Same father, same face: deep learning
reveals selection for signaling kinship in a wild primate,” Sci. Adv., vol.
6, no. 22, p. eaba3274, May 2020, doi: 10.1126/sciadv.aba3274.

[5] L. A. Dugatkin, principles of animal behavior, 4th edition. University of
Chicago Press, 2019.

[6] S. B. Rosenthal, C. R. Twomey, A. T. Hartnett, H. S. Wu, and I. D.
Couzin, “Revealing the hidden networks of interaction in mobile
animal groups allows prediction of complex behavioral contagion,” Proc.
Natl. Acad. Sci. U. S. A., vol. 112, no. 15, pp. 4690–4695, Apr. 2015, doi:
10.1073/pnas.1420068112.

[7] M. W. Mathis and A. Mathis, “Deep learning tools for the
measurement of animal behavior in neuroscience,” Current Opinion in
Neurobiology, vol. 60. Elsevier Ltd, pp. 1–11, Feb. 01, 2020, doi:
10.1016/j.conb.2019.10.008.

[8] A. Toshev and C. Szegedy, “DeepPose: human pose estimation via deep
neural networks,” in Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, Sep. 2014, pp.
1653–1660, doi: 10.1109/CVPR.2014.214.

[9] A. Jain, J. Tompson, Y. LeCun, and C. Bregler, “MoDeep: a deep
learning framework using motion features for human pose estimation,” in
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 2015, vol.
9004, pp. 302–315, doi: 10.1007/978-3-319-16808-1_21.

[10] J. Tompson, A. Jain, Y. LeCun, and C. Bregler, “Joint training of a
convolutional network and a graphical model for human pose estimation,”
in Advances in Neural Information Processing Systems, 2014, vol. 2, no.
January, pp. 1799–1807.

[11] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler, “Efficient
object localization using convolutional networks,” in Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2015, vol. 07-12-June, pp. 648–656, doi:
10.1109/CVPR.2015.7298664.

[12] M. Andriluka et al., “PoseTrack: a benchmark for human pose
estimation and tracking,” in Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2018, pp.
5167–5176, doi: 10.1109/CVPR.2018.00542.

[13] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for
human pose estimation,” 2016. doi: 10.1007/978-3-319-46484-8_29.

[14] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, and B. Schiele,
 “Deepercut: a deeper, stronger, and faster multi-person pose
estimation model,” May 2016, vol. 9910 LNCS, pp. 34–50, doi:
10.1007/978-3-319-46466-4_3.

[15] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi:
10.1162/neco.1997.9.8.1735.

[16] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of
training recurrent neural networks,” in 30th International Conference on
Machine Learning, ICML 2013, Nov. 2013, no. PART 3, pp. 2347–2355,
Accessed: Jun. 01, 2020. [Online]. Available:
http://arxiv.org/abs/1211.5063.

[17] M. Khashei and M. Bijari, “A novel hybridization of artificial neural
networks and arima models for time series forecasting,” in Applied Soft
Computing Journal, 2011, vol. 11, no. 2, pp. 2664–2675, doi:
10.1016/j.asoc.2010.10.015.

[18] L.-M. Liu, G. B. Hudak, G. E. P. Box, M. E. Muller, and G. C. Tiao,
 “Forecasting and time series analysis using the sca statistical
system,” 1992. Accessed: Jun. 12, 2020. [Online]. Available:
http://scausa.com/SCADocs/SCAFTS_V1.pdf.

[19] P. G. Zhang, “Time series forecasting using a hybrid arima and neural
network model,” Neurocomputing, vol. 50, pp. 159–175, Jan. 2003, doi:
10.1016/S0925-2312(01)00702-0.

[20] R. E. Schapire and Y. Singer, “Improved boosting algorithms
using confidence-rated predictions,” Mach. Learn., vol. 37, no. 3, pp.
297–336, 1999, doi: 10.1023/A:1007614523901.

[21] Y. Freund and R. E. Schapire, “A decision-theoretic
generalization of on-line learning and an application to boosting,” J.
Comput. Syst. Sci., vol. 55, no. 1, pp. 119–139, Aug. 1997, doi:
10.1006/jcss.1997.1504.

[22] J. Schmidhuber, “Deep learning in neural networks: an overview,”
Neural Networks, vol. 61, pp. 85–117, 2015, doi:
10.1016/j.neunet.2014.09.003.

Fig. 5. Box & Whisker plot comparing the MSE range between the LSTM

network and ARIMA model. We can see the LSTM has less variability in its

error rate and lower MSE compared to the more traditional ARIMA.

[23] P. Le-Hong and A. C. Le, “A comparative study of neural network
models for sentence classification,” in NICS 2018 - Proceedings of 2018
5th NAFOSTED Conference on Information and Computer Science,
2019, pp. 360–365, doi: 10.1109/NICS.2018.8606879.

[24] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
continual prediction with lstm,” Neural Comput., vol. 12, no. 10, pp.
2451–2471, Mar. 2000, doi: 10.1162/089976600300015015.

[25] J. Lee Rodgers and W. Alan Nice Wander, “Thirteen ways to
look at the correlation coefficient,” Am. Stat., vol. 42, no. 1, pp. 59–66,
1988, doi: 10.1080/00031305.1988.10475524.

[26] J. Cohen, statistical power analysis for the behavioral sciences.
Taylor & Francis, 2013.

[27] M. Kabra, A. A. Robie, M. Rivera-Alba, S. Branson, and K. Branson,
 “JAABA: interactive machine learning for automatic annotation of
animal behavior,” Nat. Methods, vol. 10, no. 1, pp. 64–67, 2013, doi:
10.1038/nmeth.2281.

[28] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term
dependencies with gradient descent is difficult,” IEEE Trans. Neural
Networks, vol. 5, no. 2, pp. 157–166, Mar. 1994, doi: 10.1109/72.279181.

[29] J. F. Kolen and S. C. Kremer, “Gradient flow in recurrent nets:
the difficulty of learning longterm dependencies,” in A Field Guide to
Dynamical Recurrent Networks, 2010.

[30] T. Jonsson, E. A. Kravitz, and R. Heinrich, “Sound production
during agonistic behavior of male drosophila melanogaster,” Fly
(Austin)., vol. 5, no. 1, pp. 29–38, 2011, doi: 10.4161/fly.5.1.13713.

