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Abstract— A foundational step in the study of any animal is the 

establishment of an accurate behavioral model. Building a model 

that is capable of defining and predicting an animal’s behavior is 

critical to advancing ethological theory and research, however 

many animal models fail to be sufficiently thorough or often do not 

exist at all. Great pools of data are available for improving these 

models through recorded video of animals posted on video hosting 

sites throughout the internet, however these sources are largely 

left unused due to their sheer quantity being too much for 

researchers to manually observe and annotate. This paper 

proposes a method for efficiently converting video of animals at 

any length into models capable of making accurate behavioral 

prediction. This predictive model is developed through a data 

processing pipeline merging an ensemble meta-algorithm for 

behavior classification with a long short-term memory network 

for temporal pattern recognition and prediction. The application 

of this pipeline produced results with a higher degree of predictive 

accuracy compared to more traditional autoregressive techniques. 

These findings suggest the method has significant potential as a 

tool for efficiently developing new models and findings in the study 

of animal behavior. 
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I. INTRODUCTION 

The cataloguing and quantitative measurement of animal 
behavior has been a staple of ethology and behavioral ecology 
since the fields’ earliest conceptions in the 19th century [1]. 
Recent advances in artificial intelligence have further bolstered 
these fields with the development of machine vision and 
machine learning based tools for analyzing animal behavior in 
video [2]. Now with these modern techniques biologists have the 
opportunity to track and derive new information from animal 
behavior at a rate faster than ever before. The field of ethology, 
the study of animal behavior, is no stranger to these modern 
machine learning techniques with developments like Mathis et 
al.’s creation of DeepLabCut using deep, residual learning for 
cutting-edge animal pose estimation [3], or Charpentier et al.’s 
work using deep neural networks for face recognition in 
Mandrills [4]. Nor is the field lacking in predictive models, as 
explained by animal behaviorist Dugatkin in answering why 
mathematical theories play such a large part in ethology, 
mathematical models of behavior sometimes produce 
unexpected predictions. And these predictions can serve as a 

jumping-off point for empirical tests in ethology. Or if a model 
predicts correctly with one animal system but not others, it may 
produce new insights in the differences between species [5].   

Many mathematical models have been made in the 
prediction of organism behavior, and numerous studies have 
produced developments in their classification and tracking. And 
yet, comparatively few have sought to use these methods for 
producing data for the implementation of behavior prediction 
using modern time series analysis-based models.  

We seek to evaluate the potential for building a functional 
model for the prediction of an organism’s behavior through the 
training of Long Short-Term Memory (LSTM) networks on 
observational data of an organism’s behavior in video. The 
scope of this evaluation entails establishing whether such 
networks can provide accurate predictions of an organism’s 
future behavior based on training on past behaviors and relevant 
spatial information. After making its predictions for increasingly 
large lengths of time-steps ahead, we calculate its accuracy in 
terms of mean squared error and compare it to the results of a 
statistical analysis model that is made for predicting on time-
series data and tasked with the same goal.  

This paper aims to contribute to the discussion and 
development of predictive organism behavioral models using 
modern machine learning techniques. And in order to do so we 
propose a potential pipeline for efficiently converting animal 
video and tracking data to an optimal predictive model.  

In Section 2 we aim to contribute to the discussion of 
behavioral modeling by highlighting recent work carried out 
related to the field. Section 3 details our proposed predictive 
behavior pipeline and steps through each element involved in its 
creation and evaluation. Section 4 details the evaluation itself: 
the dataset used, the predictions made, the results of our work, 
and discussion on its implications. Lastly Section 5 describes 
our conclusions on the study and details how we will build upon 
it in the future.  

II. RELATED WORK 

The primary focus of our study is the evaluation of deep 
learning and machine vision integration to form an efficient 
pipeline for analyzing and predicting organism behavior. 
Though the studies on machine vision based prediction 



modeling in behavioral ecology are limited, we do see a strong 
contribution from Rosenthal et al. [6] in their work in which they 
evaluate the complex networks of interaction between schooling 
fish. This is accomplished by tracking their body movements 
and locations in the school, calculating the field of vision for 
every fish within it, and using this data to find the connection 
between sensory input from other members of the school and 
their own motor response while collectively evading threats. 
Building out these connections as a functional model of 
networked behavior allows them to analyze this hidden 
communication within the group and accurately predict complex 
changes in the behavior of the school before they occur [6]. 
While aligning with our own study’s goal of predicting organism 
behavior before it occurs, their methodology approaches the 
analysis from the bottom up, functionally modelling the 
individual experience of each fish in relation to its environment. 
In our approach we take a comparatively top down view, 
analyzing the animal’s behavior as an external observer and 
training a time-series analysis model for prediction based on 
those observations.  

The application of machine learning techniques in 
identifying pose in video has been a fast evolving field, 
developing rapidly over the past six years [7]. It began with 
DeepPose, an application of deep learning to human pose 
estimation in two dimensions [8]. Since then numerous other 
deep-learning pose estimators have followed, including 
frameworks using motion features [9], integrated training using 
a convolutional network and a graphical model [10], using 
convolutional networks for advancing object localization [11], 
establishing a benchmark for pose estimation and tracking [12], 
and human pose estimation with stacked hourglass networks 
[13]. DeeperCut by Insafutdinov et al. marked a milestone in 
producing accurate multi-person pose estimation using graph 
cutting guided by deep learning based body part detectors [14].  

The first powerful example of machine vision for ethology 
is the aforementioned DeepLabCut tracking software [3]. 
Developed in part through the benchmarking of a selection of 
the features used by DeeperCut, this 2D and 3D pose tracking 
tool can be applied to a wide range of organisms in a multitude 
of different environmental contexts. From a horse to a fly to just 
the limbs of a mouse, DeepLabCut leverages the power of deep, 

residual networks to maintain accurate pose tracking on them 
all. The inclusion of DeepLabCut in a future predictive pipeline 
could lead to a greater degree of generalizability in animal 
tracking. However, it differs from our proposed predictive 
behavior pipeline in that it stops at the pose tracking. Any 
behavioral annotation must be carried out manually or using 
external software. 

 In the proceeding section we will detail our emphasis on 
behavioral classifier generation and automated behavior 
labeling for the production of behavioral time-series data. 

III. PREDICTIVE BEHAVIOR PIPELINE 

In this study we implemented an integration of machine 
learning techniques and evaluated their potential as a pipeline 
for predicting animal behavior. The components of this pipeline 
are displayed in Fig. 1. The first stage of this framework utilized 
a type of machine learning meta-algorithm called AdaBoost, or 
adaptive boosting, used in combination with decision stumps as 
weak learners. We first manually annotated the behavior of our 
subjects frame by frame within a small portion of our pose-
tracked video based on established ethograms. After this 
labeling we then extract the features related to each frame of 
video and the subjects within, building decision stump classifier 
functions. The adaptive boosting algorithm prunes for the 
resulting functions that are most accurate in replicating the 
manually labeled frames of behavior. The end product is a 
classifier for each labeled behavior that is then applied to the 
remaining unlabeled footage, automatically annotating the 
behaviors exhibited therein. Once this was done, the behavioral 
annotations and classifier function results were paired frame by 
frame to build a behavioral dataset.   

Using this dataset, we were able to integrate the automated 
classification methodologies of the adaptive boosting algorithm 
with the forecasting power of Long Short-Term Memory 
networks. This allowed us to pipeline from unlabeled video of 
an animal as input to a predictive model of the animal’s behavior 
as output. The LSTM network is an ideal architecture for this 
process as it was made for handling the temporal element of our 
behavioral dataset and could deal with the vanishing gradient 

 

Fig. 1.  Flowchart displaying each step of the predictive behavior pipeline.  



problem [15], [16] typically seen in other recurrent neural 
networks. 

   Lastly, we implemented an autoregressive integrated 
moving average (ARIMA) model to analyze and predict using 
the generated behavioral annotations. The ARIMA model is 
well suited for fitting temporal data and forecasting future steps 
in time series, so it was a good fit for our behavioral data. As a 
well-established form of time series analysis, the ARIMA 
model’s predictions were then compared against the LSTM’s to 
evaluate the network’s predictive significance [17]–[19].  

A. Adaptive Boosting 

The term “boosting” refers to a meta-algorithmic approach 
to producing accurate classifications using the selective 
combination of several less accurate classifiers, commonly 
called weak learners [20]. The basic form of a boost classifier is 
as follows: 

 
FT(x)= ∑ f

t
(x),

T

t=1

   (1) 

in which object x is taken as a input to each weak learner 
function ft which then outputs a value representing the 
determined class of the object [21]. An output hypothesis, h(xi) 

is made for each sample of a training dataset by every weak 
learner. Every t iteration the coefficient αt is applied to a chosen 
weak learner in order to make the resulting classifier’s sum 
training error Et minimal as shown below: 

In the above equation Ft-1(x) represents a classifier that was 
boosted in the prior t iteration, while E(F) is the error function 
being implemented [21]. For each of these iterations a weight 
wi,t equaling the error is assigned to the sample. Here αth(x) = 
ft(x), which is the weak learner function being evaluated for 
inclusion in the finished boosted classifier.  

In this study a form of boosting called Gentle AdaBoost is 
used which differs from other boosting algorithms in that its 
weak learning functions ft are bounded in their step size rather 
than reducing the greatest amount of test error at each step [20]. 
The weak learners are picked to minimize: 

 ∑ 𝑤𝑡, 𝑖(𝑦𝑖 − 𝑓𝑡(𝑥𝑖))
2

i

,   (3) 

without the minimizing coefficient αt being used. The end result 
is a fast and highly generalizable boosting algorithm that is well 
suited for efficiently classifying through large datasets [20].  

B. LSTM 

Traditional artificial neural networks rely on a feedforward 
approach in which information is only passed forward for 

decision making [22]. Recurrent neural networks (RNN) differ 
in that they implement feedback, enabling many cycles of 
information processing. This looping architecture allows for the 
network to retain information from previous input data, allowing 
it to incorporate time as a dependent factor in the information 
that it processes [23]. Most of these networks, however, suffer 
from the vanishing or exploding gradient problem in which the 
error signal that shifts neuron weights drops to very small values 
or expands to extremely large values. Long Short-Term Memory 
networks are a form of RNN that overcome this problem through 
the use of additional memory block architecture featuring 
constant error carousels (CEC) and forget gates [22]. This ability 
to retain backpropagated errors through layers of the network 
without vanishing or exploding gradients makes the LSTM 
model suitable for recognizing the connections of events that 
happen upwards of thousands of time steps separate from each 
other [22].  

The hidden layer of the LSTM is composed of memory block 
units that contain memory cells and a pair of gating units that 
multiplicatively influence all inputs and outputs to the memory 
cells in their block. The memory cells within each block contain 
CEC units and their activation is called the cell state. To prevent 
the vanishing error problems when there is a gap in input or error 
signals, the CECs are able to keep the local error backflow 
constant, showing no exponential growth or rapid shrinking. If 
the cell state is near zero then the gates are closed, protecting the 
memory block from noise and keeping the rest of the network 
unaffected [24].  

Each step of the LSTM is evaluated in terms of units of 
discrete time t and entails a forward pass and backward pass. 
The forward pass updates every memory block and the 
backward pass recomputes the error function for all the weights 
[24]. The activation for each input gate yin and output gate yout is 
stated below.  

 𝑛𝑒𝑡outj
(t)= ∑ woutjm

ym(t-1)

m

, (4) 

 
youtj(t)=f

outj
(netoutj

(t)) , (5) 

  netinj
(t)= ∑ winjm

ym(t-1)

m

, (6) 

 
yinj(t)=f

inj
(netinj

(t)) . (7) 

Here f is a range (0,1) sigmoid function, m is the source unit 
index, and v is the index of each memory cell within each 
memory block j. The state of each memory cell sc(t) is computed 
by a squashed, gated input to the prior time step sc(t-1) (t > 0):  

 𝐸𝑡 = ∑ 𝐸[𝐹𝑡−1(𝑥𝑖) + 𝛼𝑡  ℎ(𝑥𝑖)].

𝑖

  (2) 



  netcj
v(t)= ∑ wcj

vmym(t-1)

m

,  (8) 

 
 scj

v(t)=scj
v(t-1)+yinj(t)g (netcj

v(t)) , (9) 

with scj
v (0)=0. Here cj

v represents the memory cell of index 

v for the memory block of index j. The gated input is squashed 
by a (-2, 2) range, centered logistic sigmoid function g. Each cell 
output yc is computed using the output squashing function h, a 
centered sigmoid with range (-1,1), to squash each cell’s internal 
state sc before multiplying it by the memory block’s output gate 
activation yout [24]: 

 
ycj

v

(t)=youtj(t)h (scj
v(t)) . (10) 

Using a layered network topology with a standard input 
layer, a hidden layer of memory blocks, and a standard output 
layer, the formula for the output units k are: 

 𝑛𝑒𝑡k(t)= ∑ wkmym(t-1)

m

,yk(t)=f
k
(netk(t)), (11) 

in which m is the range of all units contributing to the output 
units, i.e. the memory cells within the memory blocks in the 
hidden layer and the input units [24].  The squashing function fk 
is also a logistic sigmoid of range (0,1). From this base we can 
then extend the LSTM model to use adaptive forget gates, which 
implements both immediate and gradual resets of memory 
blocks to zero as their contents grow out-of-date in the 
processing of long time series data. This is done by replacing the 
CEC constant weight of 1 with an adaptive forget gate activation 
yφ. This gate activation is calculated as:  

 𝑛𝑒𝑡φj(t)= ∑ wφ, m ym(t-1)

m

 ;   (12) 

 

 y
φj(t)=f

φj
( netφj

(t)) . (13) 

In this equation 𝑛𝑒𝑡φ𝑗  is the network’s input to the forget 

gate. 𝑓φ𝑗
 is a squashing function using the logistic sigmoid with 

range (0,1). The output  y
φj(t) then serves as a multiplicative 

weight of the self-recurrent connection in the computation of the 
state of each memory cell sc, with the revised equation (when t 
> 0) as follows:  

with 𝑠𝑐𝑗
𝑣 (0) = 0. The initial bias weights for the input gates 

and output gates are negative and for the forget gates they are 
positive. This means that the forget gate activation at the start of 
the training phase will be nearly 1.0, making its output 
equivalent to an LSTM memory cell without the forget gate 
architecture. As the training continues it then learns to reset 
memory blocks to zero [24].  

This ability of the LSTM model to modulate the impact of 
data moving through its cells makes it apt for the processing and 
prediction of semi-stochastic data over both small and large 
quantities of time-steps. To that end, the behavioral dataset 
prepared using the gentle adaptive boosting algorithm makes for 
an ideal fit in the model’s architecture. Preparing the data for 
multi-step forecasting allowed us to design an LSTM capable of 
predicting many frames into the future from any starting set of 
time-steps. This preparation entailed restructuring the dataset of 
behavior annotations such that for each time-step in the dataset, 
the behavior classified at that timestep was represented as an 
array of future behaviors from that point. In this preparation, the 
length of the array determines the number of frames forward the 
LSTM will output in its predictions. 

3.3 Autoregressive Integrated Moving Average Model  

Having an established model prepared for time-series 
statistical analysis ensured that after training and testing the 
LSTM network we were able to evaluate its significance as a 
tool for behavioral prediction. The autoregressive integrated 
moving average (ARIMA) model was selected based on our 
need to analyze and forecast from non-stationary time-series 
behavioral annotations [19]. 

The ARIMA model predicts future points in a dataset by 
applying linear functions between random error and recent prior 
points in time. The equation for this application is:  

 

y
t
=θ0+ϕ

1
y

t-1
+ϕ

2
y

t-2
+⋯+ϕ

p
y

t-p
 

+εt-θ1εt-1-θ2εt-2-⋯-θqεt-q 

(15) 

in which 𝑦𝑡 is the value at the given time-step t and ε𝑡  is the 
respective random error. p and q are integers that serve as the 
orders of the model and the parameters are ϕ𝑖(𝑖 = 1,2, … , 𝑝) 
and  θ𝑖(𝑗 = 0,1,2, … , 𝑞)  [17], [19]. Using an automatic 
optimization tool in python we found optimal parameters for the 
ARIMA model fit to the behavioral annotations. From there we 
made predictions of length equivalent to the LSTM model’s and 
found the mean squared error (MSE) for both sets of predictions. 
Comparing these MSE values we described their differences, 
distributions, significance in terms of Pearson’s correlation [25] 
and effect size in terms of Cohen’s d [26]. As an effect size, 
Cohen’s d gives the standardized mean between two datasets. It 
is found as the difference between each dataset’s mean values 
divided by a standard deviation of the combined data. 

IV. EXPERIMENTAL EVALUATION 

We processed video and tracking data in JAABA, the Janelia 
Automatic Animal Behavior Annotator. JAABA is a software 
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implementation of adaptive boosting built for this task, using 
animal behavior data prepared by the Branson lab at HHMI 
Janelia Farm [27]. Combining the annotated behaviors and the 
results of the classifier functions we then built an LSTM 
network to train on the data and make future behavior 
predictions. These results were then compared to results from a 
standard predictive model to evaluate their significance.  

A. Data Collection 

The dataset used in this experiment was made by the 
Branson lab and the Janelia Farm Fly Olympiad Team for work 
on a neural activation screen of the Rubin GAL4 collection [27]. 
The data consists of two files. The first is a 30 frame-per-second 
video of 10 male and 10 female adult Drosophila melanogaster 
exploring a fly bowl. This video is comprised of 23,972 frames 
total.  The second is a .mat file containing pre-computed 
trajectories of each fly in a JAABA compliant format [27].  

B. Adaptive Boosting & JAABA 

We selected JAABA, for executing the first stage of the 
processing pipeline. Many applications have been developed for 
the purpose of tracking the behavior of animals observed in 
video. One commonly shared drawback with these programs is 
that they rely exclusively on the manual input of observed 
behavior at each frame of video. JAABA overcomes this 
limitation using an implementation of the aforementioned 
adaptive boosting algorithm called Gentle AdaBoost [27].  

Feature sets are created within JAABA after manually 
annotating the behaviors exhibited in a small portion of frames. 
These feature sets are used by decision stump classifiers to 
relabel the behaviors that were manually annotated. The 
adaptive boosting algorithm combines the most accurate 

amongst these in order to produce behavior classifiers that are 
then applied to the full set of video frames.  

 A visualized example of one such classifier can be seen in 
Fig. 2. The strings in the right column are features relative to the 
window view of the tracked subject. The decision stumps make 
binary decisions based on threshold values for each window 
feature. Decisions on features that align with the manually 
labeled data receive weight to give them greater impact in the 
cumulative classification decision. In Fig. 2 the classifiers are 
listed in descending order, with the heaviest on top. The left 
column in the figure visually represents the application of the 
behavior classification across the full video based on each 
window feature independently. In JAABA’s GUI the automated 
behavioral labeling and the system’s confidence levels are 
displayed to the user in a timeline view of the video’s frames 
and the user can then correct and update the classifiers and their 
automatic labeling. Through this iterative process users are able 
to rapidly annotate thousands of frames of behavior with 
minimal manual input [27].  

C. Approach 

We set out to evaluate the potential for behavior prediction 
using a pipeline integrating the classifier generation techniques 
of JAABA and the time series sensitive predictive potential of 
LSTMs. By first processing trajectory tracked Drosophila 
melanogaster video in JAABA we are able to generate 
behavioral classifiers. The raw output of these classifier 
functions is then paired with the automatically annotated 
behavior of the Drosophila melanogaster for each frame of the 
video. The resulting two-dimensional dataset is then divided into 
training and testing data for an LSTM network. From here the 
framework can be evaluated in terms of its accuracy in 
predicting the future behavior of the fly at increasingly distant 
lengths of frame. We then compare the MSE of the LSTM’s 
predictions to the MSE of predictions from ARIMA, our 
established statistical model for time series analysis.  

While ARIMA and LSTM are both machine learning models 
fit to process and make predictions on time-series data, their 
structures differ significantly. ARIMA implements an 
integration between autoregression and moving average models 
to fit data and predict future time-steps. It evaluates each time-
step as the difference between the current and prior step. In 
doing so it is able to make the data stationary for autoregression 
and make predictions with its lagged values [18]. This contrasts 
with the LSTM model, which fits its data and makes predictions 
using deep learning. The model is an enhanced version of a 
recurrent neural network in which constant error carrousels and 
forget gates enable the network to account for contexts between 
time-steps both near and far from each other[15], [28], [29].  

D. Experiments 

After loading the Drosophila melanogaster dataset into 
JAABA, one fly was selected and its behavior was manually 
labeled for 7000 frames. The annotated behaviors were based on 
a common Drosophila melanogaster ethogram [30] and 
featured: grooming, chase related movement, non-chase related 
movement, and remaining still. With the 7000 manually 
annotated frames JAABA then developed classifiers for each 
behavior and annotated the behavior of the fly in the remaining 

 

Fig. 2. A visual depiction of the behavioral classifier used for automatically 

labeling when a fly is chasing another fly. 
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frames. The results of the behavior classifier functions and the 
annotated behaviors were then paired frame by frame and 
exported as a single two-dimensional dataset.  

This dataset was then prepared for use with the LSTM 
network. To do this, the data was first loaded into a Jupyter 
notebook running Python 3.6. The four annotated behaviors 
were then integer encoded as 0, 1, 2, and 3. Both the integer 
encoded behaviors and the classifier function results were then 
standardized by scaling their values to a 0 to 1 range. From here 
each frame in the dataset was paired with a sequence of values 
representing the annotated behaviors for a given number of 
frames in the future. This quantity of frames can be configured 
in order to evaluate predictions closer or further out from any 
given frame. For this experiment its maximum prediction range 
was set to 300 frames out, which at 30 frames per second equals 
10 seconds into the future. The standardized data was then 
divided with an 80/20 split into training and testing sets.  

A stacked LSTM model was then defined for use in multi-
step forecasting using the python deep learning API library 
Keras running with TensorFlow. The model was comprised of 
two stacked hidden layers of 100 units each and an output layer 
that predicts a quantity of frames as configured in the data 
preparation stage. In this case, 300. The model also uses a 
configurable input shape for determining how many prior 
frames it processes for each set of predictions. This was set to 
120, meaning that it evaluates the 120 prior frames in the context 
of the model in order to predict the subsequent 300 frames. Fig. 
3 provides a visualization of this network’s arrangement. The 
model was then compiled with the Adam version of stochastic 
gradient descent for its optimizer and mean square error as its 
loss function. We then fit the model to the training data, 
undergoing 10 epochs with a batch size of 100, and evaluated its 
predictive ability.  

In order to evaluate the significance of the LSTM model’s 
predictions, the autoregressive integrative moving average 
model was then constructed. An auto ARIMA function was used 
to find optimized (p, d, q) values of (1, 1, 2), after which the 
model was trained on 80% of the JAABA behavior annotations. 
Once fit, it stepped through each frame of the remaining test 

data, predicting 300 frames out for each. These predictions were 
compiled, and their mean squared errors were found. These were 
then compared to the mean squared errors of the LSTM’s 
predictions to evaluate the model’s relative predictive 
significance.  This also allowed us to analyze the LSTM’s 
effectiveness in near future versus further out behavior 
predictions.  

E. Results and Discussion 

As seen in Fig. 4, on average the LSTM network predicted 
with a higher degree of accuracy than the ARIMA model. When 
predicting behavior within two seconds of the current time-step, 
i.e. from 1 to 59 frames out, the ARIMA model demonstrates 
less error. After the 2nd second, however, and through to the 
maximum 10 seconds, the LSTM model outperforms, 
maintaining a consistently lower MSE. 

The distributions of both models’ MSE scores were tested 
and found to be non-normal. In Fig. 5 the distributions are 
displayed as a box and whisker plot. The boxes cover the second 
and third quartile values of each dataset, representing the middle 
50% of each model’s respective MSE values. The line is each 
set’s median. The whiskers indicate the scope of the data, with 
the LSTM flier points representing outliers. From this depiction 
we can see that the ARIMA model demonstrates greater 
variability and overall error in its predictions compared to the 
LSTM model, which is more consistent in its lower error rate 
aside from a few even lower outliers.  The Pearson’s correlation 
between models was 0.984, suggesting a high degree of 
correlation. The p value was 4.28e-58, implying significance in 
the difference of the models’ predictions with considerable 
certainty. Lastly, Cohen’s d was found to be 0.984, indicating a 
large effect size.  

These results supported our intuition that the LSTM 
network’s ability to interpret context across large gaps in time 
would make it uniquely suited for analyzing and predicting 
natural processes like animal behavior. Though this study was 
relatively small in scope, the results of its evaluation serve as a 
positive indication for the expansion of our proposed pipeline 
for efficiently building behaviorally predictive models from 
video up.  

 

Fig. 3. A visualization of the LSTM network built for this study. The first 
layer receives the prior 120 time-steps, each containing 95 variables from the 

JAABA produced behavioral dataset. The 100 unit hidden layers form the inter-

layer outputs. Finally, the dense layer outputs 300 sequential time-step 

predictions.  

 

 

Fig. 4. The mean square error of the LSTM and ARIMA models based on 

the number of frames ahead they made predictions on. The ARIMA 

model’s MSE surpasses the LSTM network at the 60th frame prediction. 

 



V. CONCLUSIONS 

In this study we proposed a pipeline approach for efficiently 
developing predictive behavioral models using a confluence of 
machine learning tools. We evaluated our model’s accuracy in 
prediction and its significance against a much longer standing 
time-series analysis statistical model. The results of testing our 
proposed pipeline showed promise in that the LSTM network, 
trained on the JAABA annotated frames of animal behavior and 
classifier function results, was able to outperform the ARIMA 
model, maintaining a significantly lower MSE for behavioral 
predictions of the Drosophila melanogaster from three to ten 
seconds into the future. Opportunities for leveraging the 
advantage offered to us by big data are all around us. By 
developing efficient pipelines and frameworks for working with 
data of this scale and complexity we can collectively lower the 
barrier to entry on the potential insights that await us.  

To that end, we plan to take action in response to our pipeline 
evaluation’s positive results. In future work we will expand the 
scope of the study, aiming to fully generalize the requirements 
for suitable animal video and examine additional opportunities 
for automation in the workflow. We would also like to examine 
opportunities to branch this pipeline into other domains where 
temporal event analysis and prediction applied to large datasets 
may yield useful results. Expanding the scope to make gestalt 
predictions on the interactions within biological systems could 
lay the way for new insights in their function. And increasing 
the resolution on behavioral classification until it is near 1:1 with 
the subject organism could lead to new potentials in biological 
modeling.  

REFERENCES 

[1] Z. Magić,  “The nobel prize in physiology or medicine 2009,” 
Vojnosanitetski Pregled, vol. 66, no. 11. p. 861, 2009, doi: 
10.1007/bf02867268. 

[2] T. D. Pereira et al.,  “Fast animal pose estimation using deep 
neural networks,” Nat. Methods, vol. 16, no. 1, pp. 117–125, 2019, doi: 
10.1038/s41592-018-0234-5. 

[3] A. Mathis et al., “DeepLabCut: markerless pose estimation of user-
defined body parts with deep learning,” Nat. Neurosci., vol. 21, no. 9, pp. 
1281–1289, Sep. 2018, doi: 10.1038/s41593-018-0209-y. 

[4] M. J. E. Charpentier et al.,  “Same father, same face: deep learning 
reveals selection for signaling kinship in a wild primate,” Sci. Adv., vol. 
6, no. 22, p. eaba3274, May 2020, doi: 10.1126/sciadv.aba3274. 

[5] L. A. Dugatkin,  principles of animal behavior, 4th edition. University of 
Chicago Press, 2019. 

[6] S. B. Rosenthal, C. R. Twomey, A. T. Hartnett, H. S. Wu, and I. D. 
Couzin,  “Revealing the hidden networks of interaction in mobile 
animal groups allows prediction of complex behavioral contagion,” Proc. 
Natl. Acad. Sci. U. S. A., vol. 112, no. 15, pp. 4690–4695, Apr. 2015, doi: 
10.1073/pnas.1420068112. 

[7] M. W. Mathis and A. Mathis,  “Deep learning tools for the 
measurement of animal behavior in neuroscience,” Current Opinion in 
Neurobiology, vol. 60. Elsevier Ltd, pp. 1–11, Feb. 01, 2020, doi: 
10.1016/j.conb.2019.10.008. 

[8] A. Toshev and C. Szegedy,  “DeepPose: human pose estimation via deep 
neural networks,” in Proceedings of the IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition, Sep. 2014, pp. 
1653–1660, doi: 10.1109/CVPR.2014.214. 

[9] A. Jain, J. Tompson, Y. LeCun, and C. Bregler,  “MoDeep: a deep 
learning framework using motion features for human pose estimation,” in 
Lecture Notes in Computer Science (including subseries Lecture Notes in 
Artificial Intelligence and Lecture Notes in Bioinformatics), 2015, vol. 
9004, pp. 302–315, doi: 10.1007/978-3-319-16808-1_21. 

[10] J. Tompson, A. Jain, Y. LeCun, and C. Bregler,  “Joint training of a 
convolutional network and a graphical model for human pose estimation,” 
in Advances in Neural Information Processing Systems, 2014, vol. 2, no. 
January, pp. 1799–1807. 

[11] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler,  “Efficient 
object localization using convolutional networks,” in Proceedings of the 
IEEE Computer Society Conference on Computer Vision and Pattern 
Recognition, 2015, vol. 07-12-June, pp. 648–656, doi: 
10.1109/CVPR.2015.7298664. 

[12] M. Andriluka et al.,  “PoseTrack: a benchmark for human pose 
estimation and tracking,” in Proceedings of the IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition, 2018, pp. 
5167–5176, doi: 10.1109/CVPR.2018.00542. 

[13] A. Newell, K. Yang, and J. Deng,  “Stacked hourglass networks for 
human pose estimation,” 2016. doi: 10.1007/978-3-319-46484-8_29. 

[14] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, and B. Schiele, 
 “Deepercut: a deeper, stronger, and faster multi-person pose 
estimation model,” May 2016, vol. 9910 LNCS, pp. 34–50, doi: 
10.1007/978-3-319-46466-4_3. 

[15] S. Hochreiter and J. Schmidhuber,  “Long short-term memory,” 
Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi: 
10.1162/neco.1997.9.8.1735. 

[16] R. Pascanu, T. Mikolov, and Y. Bengio,  “On the difficulty of 
training recurrent neural networks,” in 30th International Conference on 
Machine Learning, ICML 2013, Nov. 2013, no. PART 3, pp. 2347–2355, 
Accessed: Jun. 01, 2020. [Online]. Available: 
http://arxiv.org/abs/1211.5063. 

[17] M. Khashei and M. Bijari,  “A novel hybridization of artificial neural 
networks and arima models for time series forecasting,” in Applied Soft 
Computing Journal, 2011, vol. 11, no. 2, pp. 2664–2675, doi: 
10.1016/j.asoc.2010.10.015. 

[18] L.-M. Liu, G. B. Hudak, G. E. P. Box, M. E. Muller, and G. C. Tiao, 
 “Forecasting and time series analysis using the sca statistical 
system,” 1992. Accessed: Jun. 12, 2020. [Online]. Available: 
http://scausa.com/SCADocs/SCAFTS_V1.pdf. 

[19] P. G. Zhang,  “Time series forecasting using a hybrid arima and neural 
network model,” Neurocomputing, vol. 50, pp. 159–175, Jan. 2003, doi: 
10.1016/S0925-2312(01)00702-0. 

[20] R. E. Schapire and Y. Singer,  “Improved boosting algorithms 
using confidence-rated predictions,” Mach. Learn., vol. 37, no. 3, pp. 
297–336, 1999, doi: 10.1023/A:1007614523901. 

[21] Y. Freund and R. E. Schapire,  “A decision-theoretic 
generalization of on-line learning and an application to boosting,” J. 
Comput. Syst. Sci., vol. 55, no. 1, pp. 119–139, Aug. 1997, doi: 
10.1006/jcss.1997.1504. 

[22] J. Schmidhuber,  “Deep learning in neural networks: an overview,” 
Neural Networks, vol. 61, pp. 85–117, 2015, doi: 
10.1016/j.neunet.2014.09.003. 

 

Fig. 5. Box & Whisker plot comparing the MSE range between the LSTM 

network and ARIMA model. We can see the LSTM has less variability in its 

error rate and lower MSE compared to the more traditional ARIMA. 

 



[23] P. Le-Hong and A. C. Le,  “A comparative study of neural network 
models for sentence classification,” in NICS 2018 - Proceedings of 2018 
5th NAFOSTED Conference on Information and Computer Science, 
2019, pp. 360–365, doi: 10.1109/NICS.2018.8606879. 

[24] F. A. Gers, J. Schmidhuber, and F. Cummins,  “Learning to forget: 
continual prediction with lstm,” Neural Comput., vol. 12, no. 10, pp. 
2451–2471, Mar. 2000, doi: 10.1162/089976600300015015. 

[25] J. Lee Rodgers and W. Alan Nice Wander,  “Thirteen ways to 
look at the correlation coefficient,” Am. Stat., vol. 42, no. 1, pp. 59–66, 
1988, doi: 10.1080/00031305.1988.10475524. 

[26] J. Cohen,  statistical power analysis for the behavioral sciences. 
Taylor & Francis, 2013. 

[27] M. Kabra, A. A. Robie, M. Rivera-Alba, S. Branson, and K. Branson, 
 “JAABA: interactive machine learning for automatic annotation of 
animal behavior,” Nat. Methods, vol. 10, no. 1, pp. 64–67, 2013, doi: 
10.1038/nmeth.2281. 

[28] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term 
dependencies with gradient descent is difficult,” IEEE Trans. Neural 
Networks, vol. 5, no. 2, pp. 157–166, Mar. 1994, doi: 10.1109/72.279181. 

[29] J. F. Kolen and S. C. Kremer,  “Gradient flow in recurrent nets: 
the difficulty of learning longterm dependencies,” in A Field Guide to 
Dynamical Recurrent Networks, 2010. 

[30] T. Jonsson, E. A. Kravitz, and R. Heinrich,  “Sound production 
during agonistic behavior of male drosophila melanogaster,” Fly 
(Austin)., vol. 5, no. 1, pp. 29–38, 2011, doi: 10.4161/fly.5.1.13713. 

 


