
A Hybrid Decision Tree-Neural Network (DT-NN)
Model for Large-Scale Classification Problems

Jarrod Carson Kane Hollingsworth Rituparna Datta George Clark Aviv Segev
Department of Computer Science

University of South Alabama
Mobile, AL, USA

{jmc1627@jagmail., kmh1622@jagmail., rdatta@, georgewclark@, segev@}southalabama.edu

Abstract—As the Age of Information has evolved over the
last several decades, the demand for technology which stores,
analyzes, and utilizes data has increased substantially. Countless
industries such as the medical, the retail, and the aircraft
rely on this technology to guide their decision making. In the
present paper, we propose a hybrid machine learning algorithm
consisting of Decision Trees and Neural Networks which can
effectively and efficiently classify data of varying volume and
variety. The structure of the hybrid algorithm consists of a
decision tree where each node of the tree is a neural network
trained to classify a specific category of the output using binary
classification. The data with which we used to train and test
the classification ability of our algorithm is the Federal Aviation
Administration’s (FAA’s) Boeing 737 maintenance dataset which
consists of 137,236 unique records each composed of 72 variables.
We perform this by classifying the discrepancy, or cause, of
the incident into whether or not the incident occurred during
scheduled maintenance operations and then further classifying
specific details relating to the incident. Our results indicate that
our hybrid algorithm is able to effectively classify incidents with
high accuracy and precision. Additionally the algorithm is able
to identify the most significant inputs regarding a classification
allowing for higher performance and greater optimization. This
demonstrates the algorithm’s applicability in real-world scenarios
while also showcasing the benefits of combining decision trees and
neural networks as opposed to using them individually.

Index Terms—Decision Trees, Machine Learning, Neural Net-
works, Hybrid Learning, Supervised Learning

I. INTRODUCTION

Machine Learning (ML), a subfield of Artificial Intelligence
(AI) and Data Science, provides effective algorithms which
accomplish the task of prediction and classification from
structured and unstructured data. However, due to the increase
in data volume and complexity, in recent years this field faces
many challenges when designing and implementing algorithms
capable of efficiently and effectively processing the data. As
such there has been significant research conducted to create
more robust algorithms. ML consists of two main stages:
training/learning and testing/predicting. Training/learning in-
volves inserting a dataset with known characteristics into a ML
learning model in order to “train” it. Afterwards the model will
be able to make predictions based on similar data given to it in
the testing/predicting stage. There are a few recent overviews
of ML in different domains [1]–[3]. To alleviate the weakness
in individual machine learning techniques, hybrid approaches
are used.

A hybrid model which is a combination of two models,
has started gaining significant attention in machine learning
to classify / predict performance as compared to a single
learning model [4]–[7]. Neural networks already have been
used in numerous fields of science and engineering due to
its capability of prediction for new data after the training is
performed with existing dataset. On the other hand, decision
tree has capability for feature classification. In the present
work, a hybrid approach is proposed combining decision
tree and neural networks; a neural network is integrated in
each node of the decision tree. The method utilizes multiple
neural models which are each individually trained and meshed
together in a way to where the results actually perform better
than if the hybrid method was not implemented. The children
of any given node represent subcategories derived from the
parent node which may be classified as well. This allows for
the algorithm to classify data of varying degrees of granularity.
The hybrid approach that we propose utilizes the binary
classification category of machine learning and transforms
each neural network into an individual node in a binary tree.
Each node in the tree is predicting for a specific detail. The
further down the tree that the predictions go the more detailed
the prediction actually becomes. The height of the binary tree
that is structured represents the amount of details that the
outcome actually predicts for.

This ensemble learning method that is proposed is tested on
a public Boeing 737 dataset. It is essential to train and test
the neural model that is created on a public dataset rather
than a dataset that was made in a controlled environment.
Training the models on a dataset that was obtained from
Boeing 737 validates the results that are produced and shows
that this ensemble learning approach can provide improved
results when used on a dataset that is found in the real world.
The dataset that was used included 72 unique variables and
137,236 records from the Boeing 737 that were used as input
for the network to train on with each network having a single
binary neuron classifying whether the record belongs to the
specified category or not after being preprocessed. After being
preprocessed, the data was then split into training, testing, and
validation. The testing data is used to test the accuracy and
F1 of the neural network. The validation data makes sure that
there is no overfitting.



II. RELATED WORK

The first concepts of machine learning started out with the
study of the brain and how neurons fire off when certain
external events occur [8]. Ensemble learning is the concept
of using multiple neural models/training models together to
create a more accurate algorithm than the original one working
alone. Our algorithm involves using binary classifying neural
models in ensemble with a binary decision tree in order to
provide for a more accurate prediction when being compared
to just using a single neural model for the predictions.

Fatath proposed a hybrid model integrating the maximum
entropy model, support vector machine, and naive-Bayes for
multi document text summarization [9]. To improve the clas-
sification accuracy, Polat and Gunes [10] proposed a hybrid
machine learning model for multi-class problems. The method
consists of the C4.5 decision tree classifier and one-against-
all approach. The efficacy of the hybrid method was shown
on image segmentation, dermatology, and lymphography open
source datasets. A recently developed hybrid method also used
decision tree, random forest, and gradient boosting for water
quality prediction. The method is known as complete ensemble
empirical mode decomposition with adaptive noise (CEEM-
DAN). The variants of the method are proposed; one is based
on gradient boost (CEEMDAN-XGBoost) while the other
is based on random forest (CEEMDAN-RF). Interestingly,
both the methods proved their superiority to predict different
parameters [11]. Arabasadi et al. [12] combined a neural
network with a genetic algorithm to increase the performance
of the neural networks and the hybrid method was applied
on a heart disease dataset. A machine learning ensemble
technique is proposed by Pham et al. [13] to assess landslide
susceptibility. In the ensemble method, multi layer perceptron
(MLP) neural network is integrated with AdaBoost, Bagging,
Dagging, MultiBoost, Rotation Forest, and Random SubSpace.
Another hybrid prediction model is developed by Chen et al.
[14]. In that method, K-means clustering is integrated with the
J48 decision tree for the diagnosis of Type 2 diabetes. Lin et
al. [15] dealt with the data from manufacturing industries for
condition based maintenance using MapReduce and multiple
classifier types decision trees with dynamic weight adjustment.
A just-in-time defect prediction method was proposed by Yang
et al. [16] using ensemble learning. The prediction method is
also capable of handling redundancy and data imbalance in
addition to ensure robustness. Another study based on just-
in-time prediction also used ensemble learning. The authors
proposed a two-layer ensemble learning approach (TLEL)
based on decision trees [17]. The outer layer uses different
Random Forest models for training whereas the inner layer is
an integration of decision tree and bagging to build a Ran-
dom Forest model. Another recent study [18] used ensemble
learning for better predictive performance of remaining useful
life (RUL) of aircraft engines and used several methods like
multiple base learners, including random forests (RFs), classi-
fication and regression tree (CART), recurrent neural networks
(RNN), autoregressive (AR) model, adaptive network-based

fuzzy inference system (ANFIS), relevance vector machine
(RVM), and elastic net (EN). Moreover, the method also used
particle swarm optimization (PSO) and sequential quadratic
optimization (SQP) to achieve the best combination of weights
to be used in base learners. An extension of the above study is
done by Li et al. [19]. The study used directed acyclic graph
(DAG) hybridized with long short term memory (LSTM) and
a convolutional neural network (CNN) to predict the RUL.
The method is tested with a turbofan engine degradation
simulation dataset provided by NASA. We [20] proposed a
predictive maintenance strategy for Boeing 737 aircraft using
the integrated decision tree-neural network model. Marcello et
al. [21] proposed an ensemble learning based big data model
for failure rate of equipment subject to different operating
conditions. Another recently developed method [22] also used
ensemble learning, which is also capable to handle imbalance
data. The method uses adaptive boosting (AdaBoost) and
random forests (RF). The state of the art ensemble learning
can be found in [23]–[25]. Taking the vast literature into
consideration, we propose a technique by integrating a neural
network in each node of the decision tree.

III. DECISION TREE-NEURAL NETWORK (DT-NN)

A. Integrating Decision Trees and Neural Networks

We hybridize a neural network with a decision tree in the
present work. The motivation is the optimization of a single
decision in a classification. A neural network is integrated
at each node of the decision tree as shown in Fig. 1. This
integration of both the decision tree and the neural network
approach are superior as compared to both individual methods.
The performance of the neural networks are well suited for
classification into categories where the boundaries of classifi-
cation are less distinct. However, the performance of the neural
network decreases with the increase in number of categories.
The decision tree works with a large number of categories
which are distinctly classified. The decision tree is constructed
based on a set of binary possible outcomes such as 0, 1. To
achieve the same, the best possible result attribute with the
highest information gain is selected. To define information
gain, we define a measure commonly used in information
theory, called entropy, which characterizes the (im)purity of
an arbitrary collection of examples.

Entropy H(S) is defined as a measure of the amount of
uncertainty in any dataset S

H(S) =
∑
c∈C

−p(c)log2(p(c))

Where
S - The dataset for which entropy is being calculated in the

current iteration.
C - The set of the classes in S,C = 0, 1.
p(c) - The proportion of the number of elements in class c

to the number of elements in set S.
If H(S) = 0 then the set S is perfectly classified.



Fig. 1: Hybrid Decision Tree-Neural Network (DT-NN) Model

Information gain IG(A) is defined as the measure of the
difference in entropy from before to after the set S is split
on a result attribute A. This quantity measures the extent
of uncertainty S was reduced after splitting set S on result
attribute A.

IG(A,S) = H(S)−
∑
t∈T

p(t)H(t)

Where,
H(S) - Entropy of set S.
T - The subsets created from splitting set S by result

attribute A such that
S =

⋃
t∈T

t.

p(t) - The proportion of the number of elements in t to the
number of elements in S.

H(t) - Entropy of subset t.
The information gain can be estimated for each remaining

attribute. The attribute with the largest information gain can be
used to split the set S on each iteration. Thereafter, with the
largest information gain, a neural network is built. For each
binary classification, a neural network which is constructed
to classify only if the problem occurs. Each neural network
at each node of the decision tree consists of all the result
attributes which could lead to either 0 or 1.

B. Outline of the Method

The structure of the hybrid binary tree classifier gives us the
flexibility to find more detailed or less detailed classification
problems. The structure is formatted in a way so that the height
of the tree represents the complexity of the prediction of the
problem. The larger the tree, the more detailed an issue that

the network can predict on. Each level of the tree is trained
on different data that is pulled from the original dataset. If the
first node in the tree was predicting for a crack in the airplane,
it would assign the original dataset with a crack problem a 1
and all of the other entries without a crack problem 0. If we
continued the tree to predict for something with a crack and
a fuselage problem, we would separate the original dataset
into two datasets, one with crack data and one without crack
data, and assign each entry with a fuselage problem a 1 or a
0 and train a new model for each of the two subcategories.
Since we split the dataset multiple times, this method would
work best in an environment where there is a lot of data. This
method of predicting for crack then predicting for fuselage
in the binary tree format actually performs better than just
predicting for entries that contain crack and fuselage or not
from the beginning.

C. Data Preprocessing
Preprocessing the data is an essential part in order for the

neural network to accurately predict. In order for the neural
network to process the data, it must be converted into a
numeric form. To do this, the data is processed in chunks
5000 records at a time. Each record in each chunk is looked
at and every unique value is added to a dictionary and kept
track of. This process of looking in the dictionary to see if that
unique value has been added or not is done for each record.
As a new value is added to the dictionary it is given a unique
identifier which starts at 100 and increases by 100 for every
unique value recorded that is a part of that record. If any
entry in the record is found to be null, it is then assigned
a -1 to separate it from the data that is not null. If a value
is come across that is actually already in a numeric form,
is ignored. After the dictionary is created, the dictionary is
used with a mapping function alongside with the dataframe



to map each of the values found in the dictionary with its
corresponding numeric value. This process of remapping all
of the corresponding variables is done with each 5000 record
chunk in the dataset at a time. Doing this with only 5000
records at a time ensures that there is not a memory error
with reading too many values into memory at a time. This
technique of assigning a unique numeric value to all of the
non-numeric values in the data is an essential step in order
for the data to be able to be fed into the neural network for
training and producing a working model.

D. Pseudocode for Preprocessing

The pseudo code for Neural Network used
in hybrid approach is given in the following
algorithm:

1: CSV Data: Data read in from a csv file.
2: trainData: Subset of CSVData used for training neural

network.
3: testData: Subset of CSVData used for testing neural

network.
4: validData: Subset of CSVData used for validating neural

network.
5: nn: H2O DeepLearningEstimator neural network model.
6: nnMetrics: H2O dataframe containing performance met-

rics from testing the neural network.
7: resultsCSV : CSV file for containing neural network

performance metrics.
8: ImportH2O, H2ODeepLearningEstimator
9: CSV Data = open(”csvfile.csv”,”read”)

10: H2O.init()
11: H2O.read(CSV Data)
12: nn = DeepLearningEstimator(hiddenLayers, activationF

unction)
13: nn.train(invars, outvars, trainData, validData)
14: nnMetrics = nn.test(testData).performanceMetrics
15: resultsCSV = open(”results.csv”, ”write”)
16: resultsCSV.write(nnMetrics) =0

IV. EXPERIMENTS

A. Dataset and Preprocessing

The dataset that we used for the experiments, Boeing 737
data, which came from the Federal Aviation Administration,
contains 137,236 records with each record having 73 variables.
These records included data from aircraft that suffered issues
dealing with mechanical issues with the aircraft. We chose
this data for two main reasons. The first is because it is a
real world dataset that was hand documented for what the
issue is. Showing that this algorithm can work on a hand
recorded dataset shows the robustness of the given algorithm.
The second reason is because of the sheer size of the data
that we are allowing our algorithm to be trained on. Having a
dataset which contains a large number of real world records
allows for us to make sure that the algorithm is able to handle
complex inputs and perform with high accuracy. The way that
we sectioned off this data to use for the neural network was by

TABLE I: Accident and Incident Data

Operator Control Number Difficulty Date
Submission Date Operator Designator
Submitter Designator Submitter Type Code
Receiving Region Code Receiving District Office
SDR Type JASC Code
Nature Of Condition A Nature Of Condition B
Nature Of Condition C Precautionary Procedure A
Precautionary Procedure B Precautionary Procedure C
Precautionary Procedure D Stage Of Operation Code
How Discovered Code Registry N Number
Aircraft Make Aircraft Model
Aircraft Serial Number Aircraft Total Time
Aircraft Total Cycles Engine Make
Engine Model Engine Serial Number
Engine Total Time Engine Total Cycles
Propeller Total Time Propeller Total Cycles
Part Make Part Name
Part Number Part Serial Number
Part Condition Part Location
Part Total Time Part Total Cycles
Part Time Since Part Since Code
Component Make Component Model
Component Name Component Part Number
Component Serial Number Component Location
Component Total Time Component Total Cycles
Component Time Since Component Since Code
Fuselage Station From Fuselage Station To
Stringer From Stringer From Side
Stringer To Stringer To Side
Wing Station From Wing Station From Side
Wing Station To Wing Station To Side
Butt Line From Butt Line From Side
Butt Line To Butt Line To Side
Water Line From Water Line To
Crack Length Number Of Cracks
Corrosion Level Structural Other
Discrepancy

sectioning off randomly chosen data into 75% training, 15%
testing, and 10% validation. Using these percentages for the
neural network will allow the network to be trained and have
the final output model be the best in terms of accuracy and
F1 score.

The first 72 variables are given as input into the neural
network with the last variable, discrepancy, being the output
for the network. To feed the data that we are working with,
we must first format it using a preprocessing algorithm. The
goal that our preprocessing algorithm accomplishes is that it
turns string data into corresponding numerical keys which are
all recorded in a dictionary. Performing this algorithm starts
off with reading the data from a CSV file in chunks of 5000
records at a time using the Pandas Dataframe located in the
Pandas library. Each of these records that are read in will
then have corresponding values in a dictionary. Each unique
entry per column will be entered into a dictionary with a
corresponding numerical value. This unique identifying value
for that column will then have a corresponding value of the
string that was originally there. After another unique value
is found in that column, this value increases by 100 and is
assigned that. If a value in the Pandas dataframe is a NULL
value the number -1 is assigned to it. If a numerical value is
encountered, that value is ignored due to the fact that it could
be an important value in determining the result. After all of
this data is translated to its unique numerical identifier, it is
then used to generate a CSV file with all of the numerical



values. The final step in the preprocessing stage of the data
is the final creation of the text file which contains the key to
what numerical value maps to what for each column. If for
example, the data that was encountered was 115.31, and the
type for that cell was a real number, then that value will be
ignored. If a piece of data that was a string, the value would
be entered into the text file just as it was documented like in
the CSV file.

V. CORRELATIONS

The Boeing 737 incident data contains 73 variables relating
to mechanical issues. These variables are listed in Table I.
These variables were categorized into 72 input variables and
the remaining variable discrepancy, which represents the actual
incident in the reports, was categorized as the lone output
variable. The structure of our complete Neural Network (NN)
consists of 72 inputs in an input layer that is connected to
layers of hidden neurons producing one output for classifica-
tion. During the training process, the NN performs two tasks,
it determines the weight associated with each input and opti-
mizes the classification decision. These tasks were examined
with the goal of identifying and testing three correlations; 1)
number of significant inputs to classification accuracy, 2) total
number of inputs to classification accuracy, and 3) variables
to all other variables.

A. Number of Significant Inputs Correlation

In order to determine the correlation of significant inputs
to classification accuracy, the NN’s determination of input
weights was analyzed. During the NN training phase, input
variables that do not contribute to the optimization of the clas-
sification are increasingly ignored and therefore the weights
between the input layer and the first hidden layer of the NN are
reduced. It is expected that in the final NN that input variables
or features with low mean weight values have less affect on
the optimized classification. For our analysis, we organize the
input variables in descending weight order and test the NN
as input variables are added and removed one at a time. The
values for Area Under the Curve (AUC) and Accuracy for each
of the six types of activation functions were then compared.

B. Number of Total Inputs Correlation

To determine the correlation of the total number of the
input variables to classification accuracy, we analyzed the
NN’s accuracy as the amount of inputs are increased. The
input variables were again organized in descending order of
the mean value of the weight connecting the input layer and
the first hidden layer. Again, input variables were added and
removed one at a time. A comparison was made for the values
of Area Under the Curve (AUC), Accuracy, Precision, Recall,
and F1 versus the total number of inputs.

C. Correlation of Variables to all Other Variables

The correlation of each input variable with every other input
variable of the NN was determined by using the Pearson
and Spearman statistical correlation algorithms. The Pearson

correlation was used to identify any linear change relationships
between the input variables. The Spearman correlation was
employed to identify monotonic relationships between the in-
put variables. For both correlation algorithms, heatmaps were
produced showing the level of correlation of the variables.
Additionally the variables with the highest correlation with
the Discrepancy output were identified using both correlation
algorithms.

TABLE II: Pearson Correlation

Variable Names Discrepancy
OperatorControlNumber -0.162920734
OperatorDesignator -0.191397581
SubmitterDesignator -0.139558448
SubmitterTypeCode -0.114425491
ReceivingRegionCode -0.030500605
JASCCode 0.098274881
StageOfOperationCode -0.238238549
HowDiscoveredCode 0.032754564
RegistryNNumber -0.351326718
AircraftModel -0.248164469
AircraftSerialNumber -0.061595756
AircraftTotalTime 0.225559051
AircraftTotalCycles 0.425399651
EngineMake -0.217505143
PropellerTotalCycles -0.035912637
PartSerialNumber -0.015229973
PartTotalTime -0.084394422
PartTimeSince -0.062439797
PartSinceCode 0.28765802
ComponentSinceCode -0.017284174
FuselageStationFrom 0.029334189
FuselageStationTo -0.028950023
StringerFrom 0.009530162
StringerFromSide 0.19310386
CorrosionLevel -0.148433297

TABLE III: Spearman Correlation

Variable Names Discrepancy
OperatorControlNumber -0.162920813
OperatorDesignator 0.106873514
SubmitterDesignator 0.158101481
SubmitterTypeCode -0.129345355
ReceivingRegionCode 0.048436281
JASCCode 0.118254811
StageOfOperationCode -0.271904763
HowDiscoveredCode 0.048619706
RegistryNNumber -0.340778447
AircraftModel -0.199877064
AircraftSerialNumber 0.010545024
AircraftTotalTime 0.34909541
AircraftTotalCycles 0.43531384
EngineMake -0.236875842
PropellerTotalCycles -0.035912637
PartSerialNumber -0.071002955
PartTotalTime -0.239128945
PartTimeSince -0.117941956
PartSinceCode 0.341907897
ComponentSinceCode -0.021837315
FuselageStationFrom 0.111152493
FuselageStationTo -0.0815809
StringerFrom 0.188622223
StringerFromSide 0.206177495
CorrosionLevel -0.151251426



(a) AUC/Accuracy of All Inputs vs. Significant Inputs (b) Average Mean for Leading First Layer Input Weights

Fig. 2: Significant Inputs

VI. RESULTS

A. Number of Significant Inputs Correlation

Figure 2a shows the comparison of classification results into
Maintenance and Non-Maintenance categories by the number
of inputs. In particular, the figure shows the Accuracy and
AUC results when using all 72 input variables as opposed
to using the top eleven mean weight input variables. The
results are further broken down by the six activation functions
tested in the NN. The figure shows that the accuracy is nearly
identical for the activation functions regardless of whether
all 72 input variables are used or only the top eleven mean
input variables are used. The accuracy difference ranged from
0.12% less accurate with all 72 input variables with the tanh
activation function to 4.77% more accurate when only the top
eleven mean weight input variables were used with the rectifier
with dropout activation function. Figure 2a also shows that the
AUC comparisons were more varied. In this case, the range
in AUC was -1.76% using the tanh activation function with
all variables to 4.44% using the tanh with dropout for the top
eleven mean weight input variables.

In Figure 2b we show the average mean for the leading
inputs weight value between the input layer and the first layer
of the NN. The top 11 variables in the circumference box have
a mean weight of 0.15 or greater and are the main variables
relevant for high accuracy results from the NN. The results
show that issues such as Part Make, Receiving Region Code,
and Part Total Time can clearly be identified as the most
relevant classifiers. The Aircraft Model is already identified
as a less unique classifier for the type of issue involved.

B. Number of Total Inputs Correlation

Figure 3 details our findings for the correlation of the
number of inputs to AUC, Accuracy, Recall, and Precision.
Figures 3a and 3b show that both the NN’s AUC and accuracy
increase initially as the number of inputs into the NN increase.
However, both AUC and accuracy are less affected as the
number of inputs continue to increase. AUC increases only
until 16 total inputs, are used and accuracy of the NN does

not improve after the 11 inputs which were identified as the
important variables.

The AUC difference can be viewed as a less accurate value
for measuring performance. In this case, it can be attributed to
the low number of values measured to create the curve. This
could explain the difference when measuring the area with
AUC versus comparing a single Accuracy result.

Figure 3c shows that there is a small drop in recall from
100% to 85% as more values are added. Figure 3d shows
the Precision as the number of variables increases with the
mean weight decreasing. The precision value increases and
then stabilizes once the top 11 weighted variables are used.
The results show that precision is determined by the previously
identified significant variables while Recall is only slightly
affected by an increase in input variables.

When viewing the F1 value appearing in Figure 4a, these
findings are more evident. F1 increases as strongly weighted
variables are introduced and peaks at 11 variables. The F1
becomes stable at around 90% using just 11 variables. Addi-
tionally, Figure 4b shows that most outcomes are clustered in
the top right except for the high-recall initial values.

The results show the correct identification of the significant
inputs by the method of classifying mean weights in descend-
ing order. The additional input variables, which do not seem
to improve the results, can be attributed to constant values,
variables which are dependent on other inputs, or values which
are inconsistent with the expected results.

C. Correlation of Variables to All Other Variables

The heatmaps that are represented in Tables II and III
demonstrate the correlation of each variable to every other
variable using the Pearson/Spearman statistical correlation
algorithm to find out how closely associated each variable
is with another. In these tables, a 25 input sampling of the
72 input variables is shown. The closer the number is to +1,
the higher the positive linear correlation is with the variable
being compared and the greener the area is in the heatmap.
The closer the number is to -1, the higher the the negative
linear correlation is with the variable being compared and the
redder the area is on the heatmap. When the number is zero,



(a) AUC vs. Inputs (b) Accuracy vs. Inputs

(c) Recall vs. Inputs (d) Precision vs. Inputs

Fig. 3: AUC, Accuracy, Recall, and Precision vs. Number of Inputs

(a) F1 vs. Inputs (b) Precision vs. Recall

Fig. 4: F1, Precision vs. Recall vs. Number of Inputs



Fig. 5: Pearson correlation data bar chart

Fig. 6: Spearman correlation data bar chart

it means that there is no linear correlation between the two
variables and the area is yellow. So, closer the number is to
1, the more association the variables have with each other.

Using both the Spearman and Pearson correlation tests, the
variables with the highest correlation to Discrepancy were also
determined. The Pearson test results shown in Figure 5 show
a linear correlation coefficient of 0.15 or greater between the
input variables AircraftTotalCycles, PartSinceCode, Aircraft-
TotalTime, StringerFromSide. The Spearman test shown in
Figure 6 shows a correlation coefficient of 0.15 or greater
for the input variables AircraftTotalCycles, AircraftTotalTime,
PartSinceCode, StringerFromSide, StringerFrom, and Submit-
terDesignator. Analyzing the results of the combined tests
reveals that AircraftTotalCycles, PartSinceCode, and Aircraft-
TotalTime are the three variables with the highest degree of
correlation. AircraftTotalCycles was shown to be the most

significant variable with both Pearson and the Spearman test.
These results could be implemented/applied in the future to
determine which significant inputs could be used for training
the neural networks.

VII. CONCLUSION

In this paper we propose a hybrid learning strategy strategy
by integrating a neural network with decision tree. The hybrid
algorithm is tested with the Federal Aviation Administration
(FAA) data for Boeing 737. Several simulated experiments
have been performed to test the efficacy of the proposed
hybrid method. The method is tested with various network
architectures, activation functions, and different hidden layers.
The hybrid method is also verified by selecting the contributing
input features, and the similar prediction results confirm that
it successfully identified the redundant features.



To optimize our NN, three correlations were examined
with regard to classifying Discrepancy; 1) the number of
significant inputs to classification accuracy, 2) the total number
of inputs to classification accuracy, and 3) the correlation of
variables to all other variables. The first correlation showed
that the number of inputs could be reduced from 72 to eleven
significant inputs without a reduction in accuracy of the NN.
The second correlation further validated this by showing that
AUC, Accuracy, Recall and Precision stabilize with the eleven
significant inputs and gradually deteriorate with the addition of
new inputs. The third correlation further showed via heatmaps
that only a small number of inputs have a high correlation
with Discrepancy. Using these three correlations, we show
that the significant input features can be identified and that
the total number of features can be reduced without affecting
the accuracy of the NN. The hybrid learning method can be
tested in more case studies in the future. Moreover, the method
can also be tested for transfer learning in different domains.

REFERENCES

[1] A. H. Vo, T. R. Van Vleet, R. R. Gupta, M. J. Liguori, and M. S.
Rao, “An overview of machine learning and big data for drug toxicity
evaluation,” Chemical Research in Toxicology, vol. 33, no. 1, pp. 20–37,
2019.

[2] F. Samie, L. Bauer, and J. Henkel, “From cloud down to things: An
overview of machine learning in internet of things,” IEEE Internet of
Things Journal, vol. 6, no. 3, pp. 4921–4934, 2019.

[3] I. H. Sarker, A. Kayes, S. Badsha, H. Alqahtani, P. Watters, and
A. Ng, “Cybersecurity data science: an overview from machine learning
perspective,” Journal of Big Data, vol. 7, no. 1, pp. 1–29, 2020.

[4] T. Shon and J. Moon, “A hybrid machine learning approach to network
anomaly detection,” Information Sciences, vol. 177, no. 18, pp. 3799–
3821, 2007.

[5] R. R. Bies, M. F. Muldoon, B. G. Pollock, S. Manuck, G. Smith,
and M. E. Sale, “A genetic algorithm-based, hybrid machine learning
approach to model selection,” Journal of pharmacokinetics and phar-
macodynamics, vol. 33, no. 2, pp. 195–221, 2006.

[6] S. Mohan, C. Thirumalai, and G. Srivastava, “Effective heart disease
prediction using hybrid machine learning techniques,” IEEE Access,
vol. 7, pp. 81542–81554, 2019.

[7] C. Qi, H.-B. Ly, Q. Chen, T.-T. Le, V. M. Le, and B. T. Pham,
“Flocculation-dewatering prediction of fine mineral tailings using a
hybrid machine learning approach,” Chemosphere, vol. 244, p. 125450,
2020.

[8] J. Qiu, Q. Wu, G. Ding, Y. Xu, and S. Feng, “A survey of machine
learning for big data processing,” EURASIP Journal on Advances in
Signal Processing, vol. 2016, no. 1, p. 67, 2016.

[9] M. A. Fattah, “A hybrid machine learning model for multi-document
summarization,” Applied intelligence, vol. 40, no. 4, pp. 592–600, 2014.

[10] K. Polat and S. Güneş, “A novel hybrid intelligent method based on
c4. 5 decision tree classifier and one-against-all approach for multi-
class classification problems,” Expert Systems with Applications, vol. 36,
no. 2, pp. 1587–1592, 2009.

[11] H. Lu and X. Ma, “Hybrid decision tree-based machine learning
models for short-term water quality prediction,” Chemosphere, vol. 249,
p. 126169, 2020.

[12] Z. Arabasadi, R. Alizadehsani, M. Roshanzamir, H. Moosaei, and A. A.
Yarifard, “Computer aided decision making for heart disease detection
using hybrid neural network-genetic algorithm,” Computer methods and
programs in biomedicine, vol. 141, pp. 19–26, 2017.

[13] B. T. Pham, D. T. Bui, I. Prakash, and M. Dholakia, “Hybrid integration
of multilayer perceptron neural networks and machine learning ensem-
bles for landslide susceptibility assessment at himalayan area (india)
using gis,” Catena, vol. 149, pp. 52–63, 2017.

[14] W. Chen, S. Chen, H. Zhang, and T. Wu, “A hybrid prediction model
for type 2 diabetes using k-means and decision tree,” in 2017 8th IEEE
International Conference on Software Engineering and Service Science
(ICSESS), pp. 386–390, IEEE, 2017.

[15] C.-C. Lin, L. Shu, D.-J. Deng, T.-L. Yeh, Y.-H. Chen, and H.-L. Hsieh,
“A mapreduce-based ensemble learning method with multiple classifier
types and diversity for condition-based maintenance with concept drifts,”
IEEE Cloud Computing, vol. 4, no. 6, pp. 38–48, 2017.

[16] I. H. Laradji, M. Alshayeb, and L. Ghouti, “Software defect prediction
using ensemble learning on selected features,” Information and Software
Technology, vol. 58, pp. 388–402, 2015.

[17] X. Yang, D. Lo, X. Xia, and J. Sun, “Tlel: A two-layer ensemble learning
approach for just-in-time defect prediction,” Information and Software
Technology, vol. 87, pp. 206–220, 2017.

[18] Z. Li, K. Goebel, and D. Wu, “Degradation modeling and remaining
useful life prediction of aircraft engines using ensemble learning,”
Journal of Engineering for Gas Turbines and Power, vol. 141, no. 4,
2019.

[19] J. Li, X. Li, and D. He, “A directed acyclic graph network combined
with cnn and lstm for remaining useful life prediction,” IEEE Access,
vol. 7, pp. 75464–75475, 2019.

[20] J. Carson, K. Hollingsworth, R. Datta, and A. Segev, “Failing &! falling
(f&! f): Learning to classify accidents and incidents in aircraft data,” in
2019 IEEE International Conference on Big Data (Big Data), pp. 4357–
4365, IEEE, 2019.

[21] B. Marcello, C. Davide, F. Marco, G. Roberto, M. Leonardo, and
P. Luca, “An ensemble-learning model for failure rate prediction,”
Procedia Manufacturing, vol. 42, pp. 41–48, 2020.

[22] P. Zuvela, M. Lovric, A. Yousefian-Jazi, and J. J. Liu, “Ensemble
learning approaches to data imbalance and competing objectives in
design of an industrial machine vision system,” Industrial & Engineering
Chemistry Research, vol. 59, no. 10, pp. 4636–4645, 2020.

[23] R. Polikar, “Ensemble learning,” in Ensemble machine learning, pp. 1–
34, Springer, 2012.

[24] O. Sagi and L. Rokach, “Ensemble learning: A survey,” Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery, vol. 8, no. 4,
p. e1249, 2018.

[25] X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, “A survey on ensemble
learning,” Frontiers of Computer Science, pp. 1–18, 2020.


