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Abstract— Understanding the current research topics and 

their histories allow researchers to focus their capabilities on the 

current research trends. The field of topic evolution helps the 

understanding by automatically model and detect the set of 

shared research fields in the academic papers as topics. The 

authors propose a novel topic evolution method for identifying 

and predicting the emergence of new topics under the 

assumption that neighborhoods of new topics in the future have 

distinguishable structural features. Eight journals were selected 

from the Microsoft Academic Graph dataset, each representing 

topics networks with varying size, history, and research domains. 

Both retrospective classification and prospective prediction 

showed promising performance with classifications above 0.89 

for six journals and coefficients of determination exceeding 0.95 

for five journals. The result showed both the retrospective 

identification and the prospective prediction can be done, 

validating the assumption that topic evolution events can be 

predicted with a network-based approach.  
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I. INTRODUCTION 

Scientific researches are conducted to contribute towards 
new discoveries at the boundary of the knowledge, expanding 
the boundary or filling the gaps. Knowing where the boundary 
is therefore an integral part of any research activities, which is 
done by understanding the recent research topics and their 
histories in the domain. Topics in the academic papers 
represent the set of shared themes, of research fields, among 
the fellow researchers. They can appear in various forms, 
including the philosophical category of the research, 
applications of the technology, and specific algorithms. 
Identifying such topics in the academic papers are therefore a 
crucial part of research activity. Author-specified keywords or 
automatically extracted topic models are used to filter out the 
related papers from the overflowing number of new articles 
and understand their relevance to the conducted research. 
Researchers understand the topics by reviewing a multitude of 
articles, internalizing the evolution occurring within the 
researchers’ fields of interest which in turn allows them to 
ascertain the desirable paths the current and future research can 
take. A better understanding of such knowledge leads to better 
research aimed at the topics with high demands, hence holds 
academic values as well as industrial uses. 

While understanding the evolution of research topics is one 
of the inherent tasks of researchers, automation of such a 
process is not easy with the complexities involved. Topics 
evolution is not only done through maturation over time with 
continuous research on the topic, but also affected by changes 
in the interests of authors, background topics, targeted 
applications, and external circumstances. Traditional topic 
evolution methods approach this problem by utilizing text-
based topic models to understand the topic in a given document 
collection and track topical changes over time. Topic modeling 
methods extract statistical constructs based on word co-
occurrences in the given document collection, where changes 
in topics can only be measured by the differences between the 
content of two topics; connections and correlations between 
different topics were not incorporated into the traditional topic 
modeling methods [1]. Topic evolution methods are therefore 
mostly limited to identifying content transition within a given 
topic, not how it is correlated to other topics. Merge and split 
events are less sought after, with limited success [2]. 
Neglecting such events, topic evolution based on traditional 
topic modeling methods is not suited to identify and predict 
new topics as new topics in most cases result from merging or 
splitting of existing topics.  

Classifying topic evolutions is different from predicting 
such events that the latter requires prospective capability. 
Topic evolution prediction is therefore inherently limited with 
the nonexistence of textual data representing the future 
documents. One of the benefits of using a network-based 
approach is that the classification results can be extrapolated to 
allow prediction on when new topics are formed along with 
their ancestors. The main contribution of this paper is to 
propose a topic evolution method based on network-based 
topics, offering new functionalities by defining new topics with 
their neighboring topics. The goal of the method is to capture 
the emergence of new topics, which can be explained by their 
correlation to the existing topics. This can be formalized as 
classifying subgraphs in the given topic network as to-be-
neighbors of new topics in the future based on their graphical 
properties. The topic networks are first extracted from an open 
bibliographical dataset, with each network representing 
publications in a specific research journal with a focused set of 
research interests. The topic network is divided yearly to 
generate an evolving network, where each topic in timeslot y is 
either new, appearing for the first time in y for the given topic 
network, or old. Binary machine learning algorithms are 



trained using the neighbors of each node in the previous years, 
classifying the neighbor subgraphs in the past having new or 
old topics as their future neighbors. A prospective approach is 
also tested to analyze the possibility of new topic prediction 
without the knowledge of neighboring nodes. Two community 
detection algorithms are run on differentially flattened topic 
networks, showing low mean squared error (mse) values from 
regression analysis between structural properties of 
communities and future new topics along with neighbors of 
future new topics associated with them. Both the identification 
and prediction of new topics were experimented on eight topic 
networks generated from publications of eight journals from 
the Microsoft Academic Graph 1  dataset, ranging from 194 
years old New England Journal of Medicine (NEJM) to 14 
years old Journal of Informetrics (JoI). The experiment results 
showed that it is feasible to classify the generation of new 
topics based on a given topic list using the structural properties 
of subgraphs and their members. 

Section II reviews the related work on topic evolution, 
previous attempts on the prediction of new topics as well as 
background research for the proposed method. Section III and 
IV details the proposed method and experimentation, and the 
experiment results are shown in Section V.  

II. RELATED WORK 

A. Identifying Evolution of Topics 

Automatically identifying topical changes within the 
document set requires methods to extract machine-readable 
topics from the collection. Topic modeling provides a 
statistical approach to discovering topics within a given corpus, 
latent semantic structures in the form of word-popularity sets 
based on the statistical distribution and word co-occurrences. 
Latent Dirichlet Allocation(LDA) [3] finds latent topics within 
a document collection and is one of the most widely used topic 
modeling methods on which many other methods are based on 
[4], [5]. Word-topic links are iteratively assigned with word co-
occurrences between documents; topics, defined as word 
distributions over a corpus dictionary, are then assigned to each 
document [6]. Topic evolution aims to identify the evolution of 
such topics in a sequentially ordered document collection. 
Document collection is first divided either uniformly or 
irregularly [7] into sequentially-ordered sub-collections on 
which topic models independent of the neighboring sub-
collections are generated. Temporal topic models are then 
connected over time with similarity measures, and changes in 
the topics are sequentially analyzed to identify the evolution of 
topics. Dynamic topic models [8] is one of the early 
implementations of topic evolution, focusing on capturing the 
changes within a set of chained topics with fixed timeslots 
where Kalman filter and wavelet regression is used to 
approximate natural parameters of the topics found at different 
time slices. Evolutionary theme pattern mining is tried to 
capture not only the changes within each topic but also the 
sequential connections over multiple topics [9]. Kullback-
Leibler divergence is used as a distance metric between topics, 
and the topics on different timeslots are designated as having 
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an evolutionary transition when their distance stays below a 
threshold set specifically for different datasets. Collection of 
such evolutionary transitions result in detecting merge and split 
events over time as multiple connections are allowed between 
different topics. Similar approach is made by utilizing cross-
citations between topic pairs’ member documents as well [10]. 

Topic evolution in conjunction with bibliographical dataset 
analysis has been tried by numerous researchers to better 
identify the topic evolution events. The citation contexts are 
used in an iterative topic evolution learning framework to 
increase the performance of topic evolution with better topic 
models [11], where the document collection is expanded by the 
documents cited by its members. Inheritance topic model [12] 
is utilized to classify papers into autonomous parts with 
originalities and parts inherited from cited documents. 
Differentiating two parts allowed the method to overcome the 
topic dilution with cited papers, generating more new topics 
compared to LDA-based approaches. A more recent approach 
to topic evolution utilizes communities of keywords in a 
dynamic co-occurrence network [13]. Medical subject headings 
dataset from the PubMed2  was used to build a filtered co-
occurrence network of major subjects within the medicine 
domain divided into five-year snapshots. Word clusters were 
found and linked to generate the evolution of topics over time. 
Topic evolution based on two-tier topic models is tried for a 
better merge and split detection, where topic correlations in the 
same timeslot are used to identify topic evolution [2]. 
Timeslot-specific local topics are extracted from yearly divided 
sub-collection of documents, while time-spanning global topics 
are retrieved using the whole corpus. Global topics stays static, 
having connected to dynamic local topics at each timeslot with 
cosine similarities above a given threshold. Changes in the 
number of local topics connected to global topics are then used 
to define the topic evolution events; decreased and increased 
number of local topics connected to a global topic respectively 
represent merging and splitting of the topic.  

B. Identifying and Predicting New Topics 

Topic Detection and Tracking (TDT) [14] aims to capture 
the appearances of new topics in a continuously generated text 
data in real-time; a topic is defined as “a seminal event or 
activity along with all directly related events and activities” 
[14]. First story detection (FSD) is one of the parts of TDT 
research tasks, where the goal is to search and organize new 
topics from multilingual news articles, which is translated as 
identifying the first article introducing the new story [15]. 
Topic-conditioned FSD with a supervised learning algorithm 
first classified news articles into a set of pre-defined topic 
categories before identifying novelty within each topic [39]. 
FSD is also used in conjunction with document clustering to 
identify the earliest report to a certain event in news articles 
[16]. Identification of emerging topic trends has led to the 
division of research front and intellectual base, where the latter 
is an established foundation of domain knowledge on which 
the former is built. The underlying assumption is that the 
citation and co-citation between articles transfer the existing 
knowledge from the intellectual base to the research front. 
CiteSpace II [17] further utilized a keyword co-occurrence 
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relationship by employing a bipartite graph of keywords and 
articles. Research front terms are identified by the sharp 
frequency growth then used to identify research front articles, 
which in turn are absorbed into the intellectual base in the next 
time slice. Burst term detection, in conjunction with keyword 
co-word analysis, allows multi-dimensional exploration of the 
research front in question [18]. While these approaches allow 
the detection of merging and splitting of time-spanning topics 
and their transitional ratio at temporal level, the use of the text-
based topic models inherently limits the predictive capabilities; 
the evolutionary events such as emergence, merge, or split can 
only be retrospectively analyzed once the topic is captured 
from the document set. The author previously introduced the 
use of author groups from a bibliographic dataset for 
determining topics connected over time by authors, showing 
that when topics defined by the authors are used instead of 
NLP-based topic models, topic evolution on the temporal 
network is possible; the topic evolution events defined by the 
network structures and therefore a predictive analysis is 
possible [1]. 

On top of the emergence events detected by the appearance 
of topic models dissimilar to the ones in the previous timeslots, 
there are a number of research dedicated to identifying new 
topics with a varying definition of the topic. One such field is 
the new topic identification, where the topic is defined as the 
entities the user is interested in during the search engine 
querying session; the query patterns and the intervals between 
queries are used to identify topics [19]. Neural network (NN) is 
introduced to reduce the errors in new topic estimations based 
on typos by utilizing the character n-gram method to bypass 
spelling errors in the queries [20]. There are also several 
researchers focusing on utilizing the queries’ statistical 
characteristics such as search patterns, frequency of queries, 
and the relative position in the querying sessions [21]. 
Technology forecasting [22] is another field of research aiming 
to predict the characteristics of technology in the future; the 
technology, or topic, is defined as a representative keyword 
instead of a statistical model. Various techniques from simple 
extrapolation to organization management [23] and fuzzy NLP 
[24] are used to identify and predict changes in technology 
indicators[25]. Multiple applications of the predictive topic 
evolution have been proposed, including a semi-manual 
technology trend analysis which was done to identify the roots 
of new technologies with their projected impact on the research 
field [26].  

The authors previously proposed a technology trend 
analysis approach with multiple data sources to show that 
while different data sources exhibit different forecast speeds, 
predicting the growth and shrinking in technology trends is 
possible extrapolating on a previously known technology 
growth curve [27]. A network-based approach was proposed 
by the authors in previous research to overcome the rigidity of 
trend-based forecasting where the prediction is dependent on 
the type and shape of the technology growth curve used. Node 
prediction based on preferential attachment link prediction is 
proposed to classify nodes in citation networks whether they 
have a connection to a new node in the future [28], labeling the 
new nodes by its neighboring nodes [29]. This showed that 
predicting nodes in bibliographic networks is possible based on 

the structural properties of the network. More complex 
contexts of the new nodes in knowledge networks were 
extracted by identifying the neighbors of the new node in the 
past timeslot to formulate the context of new node solely based 
on the metadata of its to-be-neighbors [30]. This paper is 
proposing a possibility of detecting and predicting the 
emergence of new topics from a topic network, where the pre-
defined keywords are used to represent topics in a given 
document collection. 

III. NETWORK-BASED NEW TOPIC IDENTIFICATION AND 

PREDICTION 

A.  Generating Topic Networks 

Identifying emerging topics in a bibliographic dataset 
equates to identifying new nodes in a topic network. NLP-
based topic modeling can be used in a retrospective analysis as 
the document set for the target topic is already present, but the 
goal of this paper is to present the prediction of new topics 
therefore textual metadata is not considered for analysis, and 
only the graphical structures are used. 

The co-occurrence relationships Ry between topic set V 
with node u and the first year of usage firstY on the 
bibliographic dataset are retrieved for each timeslot y, where Ry 
is the weighted edge set between nodes u, v with co-occurrence 
frequencies in y as weight wy and Gy represent topic co-
occurrences at year y within the target knowledge domain.  

 Gy = (V, Ry), and  (1) 

 V = (u, firstY) Ry = (u, v, wy)  (2)  

Graphs in subsequent years show the evolution of topic co-
occurrence patterns over time, therefore multiple consecutive 
graphs are merged to generate a topic network. Given the layer 
size l, the topic network for year y is defined as 

 MGy,l = {Gy-l, …, Gy}  (3) 

which is then flattened to generate a single-layer topic network. 
Differential flattening [31] is used to incorporate the varying 
importance of different layers with layer coefficient αi. 

 Ey,l = {u, v, w}, w = [α0,…, αl][wy-l,…, wy]T, and (4) 

 αi = 1 / (i + 1)2 (5) 

Instead of utilizing optimization methods, the layer 
coefficients are calculated as inverse squared year distance (5) 
to represent exponentially diminishing importance of distant 
topic co-occurrences, with 1 added to deal with zero distance 
values. The result is a single-layer topic network at given year 
y containing l previous timeslots on a topic set Vy.l containing 
the topics used in Ey,l. 

 Ty,l = (Vy,l , Ey,l) (6) 

B.  Classifying Subgraphs by the Common Neighbors 

The proposed method is run on the topic network Ty,l in (6), 
where topics in year y and l previous timeslots are classified as 
new or old based on the structural features of their neighbors. 
Neighborhoods neighbors(v, y) of each topic v in year y are 
extracted to build a set of neighborhoods Ny,l from Ty,l. Each 



neighborhood is then categorized into two groups by the age of 
v calculated by firstY(v) – y categorizing whether the topic v 
first appeared in the given year y (firstY of v equals to y). The 
state of v C(v) is calculated as the ceiling of normalized topic 
age, where the new topics are denoted by C(v) = 0. Any 
preexisting topics have non-zero ages, and the normalized 
ceiling function result in C(v) = 1. 

 Ny,l = {neighbors(v, y) | v ∈ Vy,l}, and (7) 

 C(v) = ⌈(firstY(v) – y) / max(firstY(v) – y)⌉ 

More prominent topics are likely to cooccur with more 
topics, therefore top 100 topics with the largest number of 
nodes in Ny,l are selected for each label C(v) = 0 and 1. In case 
the number of instances for one label is below 100, then the 
number of v for the other label is reduced further to have the 
same number of instances for both labels.  

Evolution of existing topics such as merge and split are not 
targeted hence there is no need to train for the gradual 
evolutions within existing topics; only static features are used 
in the experiment. TABLE I.  shows the list of 15 structural 
features of the neighbor subgraphs used to train binary 
classifiers. These features characterize the subgraph quality in 
several aspects and are grouped by the component they are 
used to measure, including six properties related to the whole 
subgraphs, four average values of node properties, two 
properties related to the number of edges, and three properties 
weighted by the topic co-occurrence frequencies. 

TABLE I.  STRUCTURAL FEATURES USED IN THE EXPERIMENT. 

Features used Description 

Subgraph 

Node Count Number of nodes 

Cohesion Number of internal/external edges 

Density Number of observed/possible edges 

Transitivity Number of observed/possible triangles 

Normalized Triangles Number of triangles/nodes 

Mean Shortest Path Mean of all node pairs’ shortest paths 

Nodes 

Mean PageRank Mean PageRank for nodes in subgraph 

Mean Degree Centrality Mean degree centrality in subgraph 

Mean Betweenness Centrality Mean betweenness centrality in subgraph 

Mean Node Age Mean age of nodes in subgraph 

Edges 

Edge Count Number of edges in subgraphs 

Mean Degree Mean degrees in subgraph 

Weighted 

Mean Degree Weighted Mean degree with edge weights 

Mean Edge Weighted Mean edge weights 

Mean Clustering Coefficient Mean weighted clustering coefficient 

The emergence of new topics is the only event being 
searched, therefore the binary classification on year y is trained 
by neighbor subgraphs in previous years and tested at y. Sets of 
open neighborhoods Trainy,l,t and Testy,l are generated using t 
previous topic networks. The same set of neighbors n in 
neighbors(v) are used to identify open neighborhood subgraphs 
of v in multiple previous timeslots, denoted by Tk,l(n) where y-t 
≤ k ≤ y. 

 sub(v,y,k) = {(n, {ni,nj}) | n ∈ neighbors(v,y), {ni,nj} ∈ Ek,l },  

 Trainy,l,t = {sub(v,y,y-t) ∪ … ∪ sub(v,y,y-1) | v ∈ Vy,l}, and  

 Testy,l = {sub(v,y,y) | n ∈ Ny,l} (8) 

The length of flattened topic network l used in conjunction 
with variable training sizes t allows a different view of the 
topic interactions over the years; larger l results in more 
integrated topic interactions in each instance, while larger t 
results in more number of instances to better train the 
classifiers. Neighbor subgraphs in (8) represent interactions 
between direct predecessors of new topics and neighbors of 
preexisting old topics, which are assumed to have 
distinguishable structural features. The classification accuracies 
and area under the ROC curve (AUC) based on these features 
are compared to show the effect of different classification 
approaches on the performance of the proposed approach. 

C. Predicting New Topics from Communities 

Successful classification of subgraphs based on the state of 
their common neighbor validates that given the correct 
neighborhood for the topic, one can ascertain whether the topic 
would be new to the given domain. The limitation of this 
approach is that it cannot be prospective in practice. The 
neighborhoods are not necessarily connected nor have strong 
connections within them, therefore retrieving such subgraphs 
without the presence of the seed set V would become a problem 
of selecting a random number of random nodes. The possible 
combinations reach well over trillions in large networks, 
rendering the approach impractical.  

Existing community detection algorithms are used as 
alternatives to the random subgraph sampling to enable 
prospective prediction. The unweighted variant of Clauset-
Newman-Moore algorithm [32] maximizing the modularity of 
clusters (Greedy) and weighted Infomap algorithm [33] based 
on Map equation (Infomap) are implemented to generate 
communities in the topic networks Ty,l which are built using the 
combinations of the same variables in (1). There is no one-to-
one relationship between the communities and their common 
neighbor topic, therefore classification labels C cannot be 
identified. Regression analysis is done on the communities 
instead to prospectively predict the formation of new topics 
and neighbors of new topics in the future. The same set of 
features in TABLE I.  are used for regression analysis as 
communities are similar to the neighborhoods that they both 
are subgraphs of the given graph and shares the same 
underlying structure. No filtering is done for the data instances, 
however, as there are no labels to balance and communities 
detected share similar sizes relative to the neighborhoods found 
in the previous section. 



Four dependent variables are introduced for the regression 
analysis. Vny,l is the set of new topics first appearing in year 
y+1 and Nny,l is the combined set of all the neighbors of Vny,l; 
the former represents a set of new topics first observed in the 
following timeslot, and the latter represents the list of topics in 
the given timeslot which would cooccur with the new topics in 
the future. As the communities do not share the same structure 
patterns, all members of the new topics and neighbor nodes are 
considered as single sets instead. 

 Vny,l = {v | v ∈ Vy+1,l, C(v) = 0}  

 Nny,l = {n ∈ ∪ neighbors(v) | v ∈ Vy,l, C(v) = 0} (9) 

Two dependent variables are generated for each community 
found; NewTopicCount measures the number of new topics 
linked to the given community members in the following 
timeslot, and NewTopicFreq measures the frequency sum of 
links to the new topics. NeighborCount and NeighborRatio on 
the other hand measure the number of to-be neighbors of new 
topics in y+1, each for the total number and ratio of 
community members having connections to the new topics in 
the following timeslot. 

IV. EXPERIMENTS 

A. Dataset Preprocessing 

Multiple topic networks were generated from bibliographic 
records extracted from the Microsoft Academic Graph (MAG) 
[34], which is a heterogeneous bibliographic dataset [35]. 
MAG is selected as the source dataset for two reasons. Firstly, 
it was deemed competitive with major bibliographic search 
engines such as Google Scholar or Scopus even with relatively 
recent creation [36]. Secondly, MAG has a built-in ontology 
called fields-of-study (FoS) representing each paper with 
different hierarchical concepts [37]. A six-level hierarchy of 
concept is generated each month using knowledge base type 
prediction with Wikipedia articles, employing graph link 
analysis and convolutional neural network methods. They are 
then tagged to the papers using a large scale multi-level text 
classification method on pre-trained word embedding vectors. 
The tagging is done weekly to keep up-to-date concept 
assignments. Identifying dataset-wide topics in a large-scale 
dataset is by itself a huge task, therefore the tagged FoS are 
defined as the topics for the document in this paper. While the 
author-assigned keywords in research publications also 
represent their topics, the MAG database does not have 
keywords as one of its relational database tables and therefore 
are not used in the experiment. 

MAG dataset snapshot in February 2020 is downloaded for 
preprocessing through the Microsoft Azure Databricks, 
containing 197,642,464 publications, 709,934 FoS, 48,829 
journals, more than 1.5 billion citation links, and 1.3 billion 
paper-FoS links. Analyzing the whole graph would be too 
complex to compute, therefore eight journals in TABLE II.  are 
selected to represent subsets of topics shared by different 
research communities. Nature, Science, NEJM, Cell, and 
Physical Review (Phys.Rev) are selected as reputable venues 
sharing broad research interests, while Journal of High Energy 
Physics (HEP), Knowledge Based Systems (KBS), and JoI are 
selected as venues with more focused research topics. 

TABLE II.  DESCRIPTIONS OF EIGHT JOURNALS IN MAG DATASET IN 

FEBRUARY 2020. 

Journal JournalId Rank Size Topic Year 

Nature 137773608 1st 217,170 69,188 1869 ~ 

Science 3880285 2nd 161,856 61,385 1880 ~ 

NEJM 62468778 7th 83,581 33,778 1827 ~ 

Cell 110447773 14th 18,396 14,672 1973 ~ 

Phys.Rev 54862371 27th 40,592 8,703 1893 ~ 

HEP 187585107 178th 28,825 5,461 1997 ~ 

KBS 10169007 3,107th 4,316 6,508 1987 ~ 

JoI 205292342 9,612th 854 1,582 2007 ~ 

 TABLE II.  shows the eight journals with ranks measured 
by the possible importance along with the number of papers 
and related topics recorded in the MAG dataset, and the first 
year publication under the journal is recorded, where a wide 
range of size and starting years are included in the journal 
subsets. Eight journal-specific datasets are extracted into the 
SQL databases using high-performance computing service by 
Alabama Supercomputer Authority 3 . All data rows in the 
Paper table containing the matching JournalId are retrieved, 
then rows matching the filtered papers in PaperFieldsOfStudy 
and FieldsOfStudy tables are retrieved for FoS used in the 
journal and how they are assigned to individual publications. 
With a series of SQL queries, FirstUsedYear column is added 
to FieldsOfStudy tables to represent the first year firstY the 
given FoS is used within the journal, and FOSneighborCount 
{Node1, Node2, Year, Frequency} table is created to represent 
undirected links within each journal with node pair u, v, year y, 
and frequency w, where FoS are the nodes and the links 
represent the two FoS assigned cooccurring in the same 
publications. Frequency shows the co-occurrences between 
two FoS, which is divided for each year to distinguish different 
FoS links and weights at different years. 

B. Generating Topic Networks 

After the dataset preprocessing is done, the topic network 
Ty,l in (1) for each journal j is generated with different 
combinations where j is the target journal, y is the target year, 
and l is the layer size. 

 y = [2000, …, 2020], l = [1, 5, 10], and  

 j = [‘Nature’, ‘Science’, ‘NEJM’, ‘Cell’,    
  ‘Phys.Rev’, ‘HEP’, ‘KBS’, ‘JoI’],  (10) 

The target year y is selected to retrieve the detection of 
newly used topics in the 21st century, and the layer size l 
dictates the number of years to build the topic network for the 
analysis. For each journal j, SQL queries are run on the 
FOSneighborCount table to extract topic co-occurrence with y–
l < FOSneighborCount.Year ≤ y where the Year column in the 
FOSneighborCount table represents the year the topics 
cooccur. The resulting edge data Ry is used to build a topic 
network for the given combination of variables using equations 
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from (3) to (6). The natural log of the frequency is used as 
weight wy in (4) to smooth the disparity between minimum and 
maximum frequencies, with 1 added as a constant to avoid 
getting 0 when frequencies equal 1.  

 wi = {ln(freq + 1)} (11) 

A combination of 21 years and three layer sizes generates 
63 topic networks iterations per a journal, resulting in a total of 
504 networks for eight journals. 

C. Classifying Subgraphs by the Common Neighbors 

The total size of Ny,l for all 8 journals reaches 945,424 sets, 
having 1,876 sets for each topic network on average. It is also 
highly skewed, with each iteration have on average 5.95 times 
more old topics than new topics; only 14.41% are for the new 
topics. Data downsampling is done to remove the total number 
of data and balance the number of labels for the classification. 
Isolated nodes v are ignored as they do not have any neighbors 
to analyze the structure. 

1.11% of the journal, target year, and year length 
combinations result in a single label result where all instances 
belong to only one of the labels. JoI is responsible for all-new 
topics as the first publication entry in the dataset starts in the 
year 2007; all topic is new to the journal’s first year. The 
behavior of topics in an initialization stage of the dataset is not 
a scope of this paper and hence removed from the 
experimentation. Training cannot be conducted with a single 
label dataset therefore iterations with all-old topics are 
removed from the experiment.  

 t = [1,3,5,7,9] (12) 

Five different training sizes t were tested to analyze the 
changes in the performances. Six binary classification machine 
learning algorithms were implemented in the experiment: 
Decision Tree, Random Forest, K-Nearest Neighbors, Logistic 
Regression, Linear Discriminant Analysis, and Gaussian Naïve 
Bayes. A fixed seed number is given to the random number 
generators in Decision Tree and Random Forest to retrieve a 
reproducible result. The number of neighbors to search in K-
Nearest Neighbors is set to 5, or the size of n if n < 5. This is 
mainly because of Phys.Rev where there are very few topics 
assigned to the publications, reaching as low as 6 total topics in 
the year 2018. This is because sister journals of Phys.Rev such 
as Physical Review A, Physical Review B, Physical Review C, 
and Physical Review D were created in 2017 with more 
focused research fields, reducing the number of publications 
related to the Physical Review journal itself. 

D. Predicting New Topics from Communities 

Linear, quadratic, and cubic regression analysis is done for 
each of the four dependent variables using all 15 features. The 
feature sets in non-linear regression are first transformed to 
polynomial formats containing all the features including 
derivatives up to the given degree, then linear regression is run 
on the polynomial features. Training sets and Test sets are 
divided by the years the same as in the binary classification 
with different lengths of the training set (7). Regression 
analysis results are measured with coefficients of determination 
(R2) and Normalized Root Mean Square Error (NRMSE). R2 

score was implemented to use the scikit-learn python library's 
linear regression score function4, where negative values can be 
generated for computational purposes; R2 value of 0 indicates 
that the model can explain none of the data, therefore any 
negative values were replaced to 0 for the analysis. NRMSE 
values follow the same unit as the source data and therefore are 
normalized by mean (NRMSEmean), differences between 
minimum and maximum (NRMSEminmax), and interquartile 
range (NRMSEinterquartile) to enable comparison between 
different variables. 

V. RESULTS 

A. Retrospective Classification of Neighbor Subgraphs 

Majority of features for new C(v) = 0 and old C(v) = 1 
topics had consistently different values over different 
combinations of journals, layer sizes, years, and training sizes 
in (10) and (12). The only exception is Phys.Rev having 7 
features showing opposite patterns. This is partially explained 
by the publishing of its sister journals in 2017 indicating the 
topical evolution was halted in recent years, resulting in 
statistically insignificant p-values of 0.19 on average for 15 
features. Another possible explanation is that the differences in 
the knowledge domains the journals belong to; Phys.Rev is the 
only medical journal tested. This could indicate that the 
structural differences between old and new topics are specific 
to a given domain. 

On 7 journals excluding Phys.Rev with 20 years and 3 
different layer size, new topics always had lower values for 
Node Count, Cohesion, Mean Shortest Path, Mean 
Betweenness Centrality, Edge Count, and Mean Degree while 
having higher values for Density, Transitivity, Mean 
PageRank, Mean Degree Centrality, Mean Edge Weighted, and 
Mean Clustering Coefficient throughout all the iterations. The 
average differences between labels were statistically significant 
for all 15 features. T-test with non-equal variance is done on all 
15 features, resulting in p-value ranging from 0.004 for Mean 
Node Age to 4.4e-99

 for Mean Betweenness Centrality with 
0.0005 as an average p-value for 15 features, 79.44% of all t-
test results showing p < 1.0e-10. It is however worth noting that 
differences in Normalized Triangles, Mean Degree Weighted, 
Mean Node Age, and Cohesion were respectively insignificant 
for 4, 8, 7, and 5 out of 24 Iterations with 8 journals and 3 layer 
sizes respectively with the majority of features for Phys.Rev 
having p-value > 0.05, indicating that simple value comparison 
would not perform well for identifying subgraphs having new 
topics as their common neighbors. 

A comparison between different ML algorithms in TABLE 
III.  shows that all six algorithms perform with high accuracy 
and AUC, indicating that it is feasible to distinguish whether 
the common neighbor of a given subgraph will be a new topic 
to the domain. Both the accuracy and AUC increase when 
Phys.Rev is excluded from the calculation reaching up to 
0.9684 and 0.9053, indicating that the journal has specific 
quality hindering the classification performance. Random 
Forest and Logistic Regression show the highest values while 
Decision Tree showing the lowest. This is because the datasets  

 
4 https://scikit-learn.org/stable/index.html 



TABLE III.  AVERAGE BINARY CLASSIFICATION ACCURACY AND AUC 

SCORE FOR SIX ML ALGORITHMS. 

ML Algorithm Acc AUC Acca AUCa 

Decision Tree 0.8110 0.8084 0.8491 0.8496 

Gaussian Naïve Bayes 0.8420 0.8822 0.8964 0.9356 

K-Nearest Neighbors 0.8635 0.8788 0.8962 0.9271 

Linear Discriminant Analysis 0.8528 0.8825 0.8856 0.9315 

Logistic Regression 0.8701 0.9085 0.9053 0.9684 

Random Forest 0.8451 0.9140 0.8788 0.9613 

a. Excluding Phys.Rev. 

used in the experiment are relatively large and complex; 
feature importance fixed in a single decision tree lessens the 
chances of better training. There were no anomaly patterns 
detected with six ML algorithms with different combinations 
of variables, hence Logistic Regression is selected to be 
analyzed further. 

The experiment result showed that there are statistically 
significant structural differences between subgraphs that would 
result in new topics and those that would not. Analyzing results 
for the selected algorithm showed the classification accuracy 
exceeds 0.895 in 6 out of 8 journals as shown in TABLE IV.  
where the average value for five training year lengths is shown 
for each of the iterations over the 20 years. Different l values 
represent the number of years used to build the topic network 
in (5), resulting in a slight increase in both the accuracy and 
AUC in the majority of journals. Phys.Rev is the exception in 
this case, where the larger l result in a further drop in accuracy 
reaching 0.58 near the 0.5 threshold where it’s becoming a 
random coin flip. This is due to the sudden drop in topic 
network activities; 548,823 topic co-occurrences were recorded 
prior to 1970 having 7,128 links each year, while only 3,823 
links were recorded from 1970 to 2020. This is explained by 
the creation of sister journals; 1970 is the year when Physical 
Review A, B, C, and D were established. The publication 
activities were spread across sister journals, effectively 
rendering structure-based classification void for Phys.Rev in 
recent years.  

TABLE IV.  BINARY CLASSIFICATION RESULTS BY JOURNALS AND 

LAYER SIZES IN ACCURACIES (ACC) AND AUC SCORE. 

 l = 1 l = 5 l = 10 

Journal Acc AUC Acc AUC Acc AUC 

Nature 0.9414 0.9930 0.9429 0.9943 0.9496 0.9956 

Science 0.9051 0.9934 0.9231 0.9957 0.9314 0.9956 

NEJM 0.9067 0.9886 0.9181 0.9892 0.9182 0.9910 

Cell 0.9307 0.9868 0.9289 0.9906 0.9345 0.9906 

Phys.Rev 0.6501 0.4569 0.6121 0.4665 0.5754 0.4884 

HEP 0.9107 0.9819 0.9144 0.9787 0.9062 0.9730 

KBS 0.8245 0.9023 0.8788 0.9403 0.8948 0.9581 

JoI 0.6944 0.7391 0.8667 0.9064 0.9295 0.9751 

JoI exhibits relatively low accuracy compared to the other 
journals but experiences a significant increase with l=5. This is 
likely due to the recency of the journal starting in the year 
2007; the structural features have not been stabilized and 
integrating multiple years was needed to build topic networks 
with more pronounced differences. The recency of JoI can also 
be observed with a different number of years t in the training 
set. Fig. 1 shows the accuracy of Logistic Regression mostly 
increases with other journals while JoI experiences lower 
accuracy with larger t. This is because the journal only had 13 
years in the MAG dataset, and longer training years result in 
initial years being included in the training set. The majority of 
the topics in initial years are by definition new to the topic 
introduced to the journal, not necessarily representing 
adaptation or creation of new topics based on past research. 
Inclusion of years with such erratic patterns would negatively 
affect the prediction accuracy as seen in Fig. 1. 

 

Fig. 1. Binary Classification Accuracy of Logistic Regression with Different 

Training Years t. 

B. Prospective Regression of Communities 

The classification of neighbor subgraphs validated that 
topic’s novelty is statistically correlated to the structure of its 
neighborhood in previous years. Multiple degrees of regression 
analysis are done to test if this finding can be applied in a 
prospective approach for predictions. Phys.Rev removed from 
the analysis as many of the property values result in NaN in 
later years, which was also the cause of lower classification 
accuracy shown in the previous section. T2007,l for JoI is also 
excluded from the analysis; 2007 is the first year JoI 
publications appear in the MAG dataset, therefore topics are all 
treated as new. This is not the normal behavior of topic 
networks falling outside the scope of this research. 

Each of the four dependent variables was first tested if they 
have significant correlations with 15 properties. Spearman 
correlation is used as the properties are not normally 
distributed, to capture non-linear correlations. The average 
value of correlation coefficients for four dependent variables in 
Fig. 2 shows that 10 out of 15 properties have moderate 
correlations with coefficient > 0.4 on average with all 
dependent variables. Three variables Node Count, Mean 
Shortest Path, and Edge Count are positively correlated to all 
four dependent variables with coefficient > 0.5, and five 
variables Density, Transitivity, Mean PageRank, Mean Degree  

 

 



 

Fig. 2. Average Spearman correlation between 15 independent and 4 

dependent variables. 

Centrality, and Mean Clustering Coefficient are negatively 
correlated with coefficient < -0.5. Only three variables showed 
an absolute coefficient value less than 0.3, with cohesion 
showing little to no monotonic relationships to four dependent 
variables. This suggests the external links from the community 
are not a good indicator of the community’s relationship with 
new topics in the future, while the structural properties of the 
community itself, weighted or otherwise, are connected to such 
information to some degree.  

Comparison between two clustering algorithms and seven 
journals showed that 87.62% of the correlation coefficients 
found from 15 features and 4 dependent variables show weak 
correlations exceeding |0.3|, while 55.71% showed moderate 
correlations with values larger than |0.5|. A comparison 
between the correlation coefficient of dependent variables 
revealed NeighborRatio had a significantly lower value of 
0.2497 compared to the coefficient of NewTopicCount, 
NewTopicFreq, and NeighborCount respectively with 0.4658, 
0.4715, and 0.4832. The absolute number of neighbors of 
future new topics has a more significant relationship with the 
graph structures compared to their ratio to the subgraph itself. 
This indicates that the correlation outcomes are less affected by 
the community size, which frequently dictates many of the 
structural properties.  

Linear, quadratic, and cubic regressions are done for each 
of the four dependent variables over 7 journals. R2 scores of the 
regression results over different variable combinations are 
averaged to first determine the best regression degree. R2 
values in TABLE V.  show that the value experiences sharp 
drops with quadratic and cubic regressions, indicating that the 
best fit for the regression lines is linear for all variables but 
NeighborRatio which showed R2 < 0.05 even with linear 
regression. The R2 value for three variables reached near 0.8, 
explaining more than 80% of the data variabilities. A 
comparison between the two algorithms shows that the 
weighted algorithm resulted in strictly better results in the three 
variables, validating the assumption that topic co-occurrence 
frequencies would positively be related to the prediction 
performance. 

TABLE V.  R2 VALUES AVERAGED BY REGRESSION DEGREES. 

Communities from Greedy Algorithm 

Dependent Variable Linear Quadratic Cubic 

NewTopicCount 0.7902 0.0828 0.0056 

NewTopicFreq 0.8139 0.1234 0.0071 

NeighborCount 0.8572 0.1000 0.0090 

NeighborRatio 0.0252 0.0022 0.0020 

Communities from Infomap Algorithm 

Dependent Variable Linear Quadratic Cubic 

NewTopicCount 0.8103 0.2419 0.0021 

NewTopicFreq 0.8366 0.2993 0.0032 

NeighborCount 0.8913 0.3007 0.0052 

NeighborRatio 0.0320 0.0024 0.0000 

R2 scores plateaued when the number of training years t 
become 5 for three dependent variables except for 
NeighborRatio, which was removed from the analysis for its 
performances. Comparisons between different t values were 
unnecessary as the variance between different t falls under 
5.61e-5 to 1.43e-5 when the t=1 was excluded; the middle-value 
t=5 was selected for further.  

Linear regression results on communities found with 
Infomap algorithms for seven journals over the 20-year 
timeslots with t=5 is shown in TABLE VI.  where values over 
0.9 are marked with bold and values below 0.8 are marked 
with italic. Nature, Science, NEJM, Cell, and HEP show higher 
values compared to KBS and JoI. The distinctively lower score 
for JoI can again be attributed to the journal being new, not 
having a stabilized pattern to be analyzed with only 13 years of 
history. The effect of the journal immaturity can also be seen 
with KBS with the second lowest value, as it had 33 years of 
history in the MAG dataset. HEP dataset had only 23 years of 
publications recorded but showing high R2 scores, but the 
effect could be seen with R2 < 0.5 when the greedy algorithm 
was used. Comparing three dependent variables showed that 
NeighborCount returns the highest score followed by 
NewTopicFreq in 6 out of 7 journals. This validates the 
assumption that identification and prediction of new topics can 
be done through their neighbors, and the frequencies of topic 
co-occurrences lead to better predictions. 

TABLE VI.  R2 SCORE OF LINEAR REGRESSION RESULTS FOR INFOMAP 

COMMUNITIES FROM DIFFERENT JOURNALS TRAINED BY 5 PREVIOUS YEARS. 

Journals NewTopicCount NewTopicFreq NeighborCount 

Nature 0.8499 0.8764 0.9576 

Science 0.9044 0.9153 0.9742 

NEJM 0.9415 0.9438 0.9613 

Cell 0.9159 0.9394 0.9767 

HEP 0.9667 0.9579 0.9834 

KBS 0.7280 0.7638 0.7878 

JoI 0.4922 0.5024 0.6900 

 

 



NRMSE with different normalization methods in TABLE 
VII.  show that the mean square errors for three variables are 
not normally distributed using linear regression on infomap 
communities with t=5. NRMSEminmax showing values more than 
20 times larger than NRMSEmean suggests that there are a small 
number of large errors present. The largest value in 
NRMSEinterquartile indicates that such large error values are 
sparse while there are numerous low-error values in the 1st 
quartile, meaning that the NRMSE follows power laws for 
each of the three variables. The least amount of errors are 
observed in NeighborCount indicating that it is the most 
accurate predictor. The NewTopicFreq variable shows the 
largest NRMSE value in contrary to its high R2 scores, which 
can be attributed to the nature of the variable; the variable 
counts the number of topic co-occurrences, which can reach up 
to thousands depending on the number of publications made 
each year unlike the other two. The large variance of the 
possible values results in a relatively lower NRMSEminmax as 
well. 

TABLE VII.  NRMSE SCORE FOR THREE DEPENDENT VARIABLES WITH 

DIFFERENT NORMALIZATIONS. 

NRMSE NewTopicCount NewTopicFreq NeighborCount 

NRMSEminmax 0.0654 0.0447 0.0435 

NRMSEmean 1.3909 1.8034 0.8763 

NRMSEinterquartile 2.3124 8.1458 2.3644 

Out of three normalization methods, NRMSEminmax is 
selected to compare the NRMSE score of three dependent 
variables for different journals in Fig. 3. Five journals which 
showed high R2 scores also showed low NRMSE values for all 
of three dependent variables, having less than 3% of the 
maximum observed value of errors on average. KBS showed 
slightly higher normalized errors around 5%, while 
communities in JoI resulted in significantly higher NRMSE 
value around 20% and more. The values suggest that the 
regression analysis can be done to predict how new topics will 
be related to the given community in various topic networks, 
consistently resulting in up to 0.95 R2 score and normalized 
RMSE ranging around 3%. The topic networks however need 
to be mature enough to have stabilized topic co-occurrence 
patterns to achieve such high performance. 

 

Fig. 3. NRMSEminmax Score of Linear Regression results for Infomap 

Communities from Different Journals Trained with 5 Previous Years. 

VI. CONCLUSION 

Topic models derived from processing unstructured 
documents can capture the number of topics shared throughout 
given document collection and can be used to detect and track 
changes in such topics over time. The text-based approaches 
however have an innate limitation of requiring the textual data 
for modeling topics, inhibiting the effective prediction of topic 
evolutions where such data is nonexistent. The paper proposed 
an alternative to such an approach by utilizing the network 
structure to model topics, where topics can be defined by its 
relative neighbors alone. Retrospective classification is first 
done to validate the assumption that the new topics can be 
distinguished by the structural properties of their 
neighborhoods in the past. Prospective prediction is done next 
to apply the findings in the classification for the prediction of 
new topics. 

Binary classification result showed that the detection of 
new topics can be done solely based on the structural features 
of their neighbors with high classification accuracy up to 0.9, 
and linear regression on communities showed that the 
prospective prediction of new topics and their to-be-neighbors 
can be done on communities found from existing community 
detection algorithms with R2 score value up to 0.97. The 
analysis of the retrospective classification and prospective 
prediction showed that the performance is closely related to the 
maturity of the topic networks as well as the range of topics; 
the dataset with more stabilized topic co-occurrence patterns 
results in better prediction performances. The case of Phys.Rev 
and JoI showed that the small, or new, topic networks result in 
poor performances as the network-based topic model requires 
certain sizes and histories to work properly. 

Future works incorporate experiments on topic networks 
based on research domains rather than individual journals for 
better coverage of the focused research interest. An algorithm 
will then be proposed to predict individual new topics based on 
network-based topic models. Instead of NeighborCount, the 
authors plan to analyze each member of communities to detect 
individual community members being to-be neighbors of new 
topics in the future. This would reveal a more focused context 
of the new topics derivable from the given communities, which 
in turn would enable distinguish individual new topics 
connected to the communities. The network-based topic model 
calls for the community detection algorithm conscious of the 
properties used for the new topic prediction, which will be 
tackled based on the existing algorithms. A new graph 
generation algorithm would be proposed afterward with the 
gained knowledge on topic emergence as well as other 
evolutionary events, simulating the topic evolution in the given 
domain. 
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