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Abstract Journey by aircraft is the only option for long distance transporta-
tion and also one of the frequently used modes of transportation of passen-
gers. As a result, safety of passengers and efficiency of the aircraft depend on
maintaining efficient running conditions. Although many safety standards are
followed in the design of the aircraft and thus there are fewer accidents, it is
necessary to perform a thorough analysis to avoid risks that may occur during
flight time. In the present work, we propose a maintenance strategy, Failing
And Not Falling (F&!F), based on the Federal Aviation Administration (FAA)
data in the United States. We work with the dataset of Boeing 737. The data
consists of 72 features with 137,236 records which describe an aircraft acci-
dent or incident. These features are used to predict whether an incident will be
identified during aircraft maintenance or during aircraft operation and what
specific type of incident will occur. The prediction method is based on the
integration of a decision tree and a unique neural network at each node of the
decision tree. The results obtained using different architectures show how deep
the neural networks should be, how to identify the relevant features, and the
success of combining decision trees and neural networks. Moreover the neural
networks and the decision tree approach also successfully identified the impor-
tant features of maintenance. This method can be used for the maintenance
of any data in multiple domains.
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1 Introduction

An aircraft is a very complicated dynamic system with interactions between
several components. As a result, with the increase in the life of an aircraft, all
the parts are exposed to different environmental, abnormal, and stress condi-
tions which not only deteriorate the performance of the aircraft but also have
an adverse effect on the structural components. Hence, maintenance of each
sub-component as well as the overall system is necessary. The goal of all airline
companies is to have a better overhaul, repair, and maintenance strategy to
ensure the safety of passengers, improved quality of service, and minimization
of running cost within minimum budget and schedule. A failure in one of the
components of the aircraft may damage the whole system. Moreover, aircraft
have structural, mechanical, heat generation, and electrical components, to
name a few, and different domain experts are necessary for the maintenance
of each one. The tremendous advancement of fast processing computers and
prediction based machine learning algorithms started attracting researchers
and industrialists to integrate maintenance with computer based predictive
maintenance where a machine learning algorithm can serve as a domain ex-
pert of each component. The predictive maintenance is performed to decide
when either the whole aircraft, a structure, or a subsystem is to be maintained.
Unlike different types of maintenance practiced by experts, predictive mainte-
nance of aircraft needs to identify a fault in a system or a subsystem while the
entire system is in operation. An equipment maintenance prediction assists
the business of an airline to grow by planning the maintenance method prior
to failure. It can inturn save cost [1], time [2] and unnecessary maintenance
activities [3] unlike condition based and periodical maintenance. In addition,
predictive maintenance can also help to achieve better reliability [4] and effi-
ciency [5] for the performance of the overall system. Predictive maintenance
can be obtained in two different ways. Out of these two, the first is based on a
classification method where the possibility of failure is predicted in the next N
number of steps. The second one is based on regression in which the remaining
time before failure is predicted. These two types of approach have the capa-
bility to save costs compared to the other type of maintenance methods, as
in the case of predictive maintenance the schedule of maintenance is essential.
As a result, all aircraft manufacturers and airline industries are directing their
interest to the predictive maintenance concept as a method that anticipates
before the actual failure.

All main components and sub-components of an aircraft must be in func-
tioning condition during the run time, and as a result the performance of each
system component must be continuously monitored to ensure safety of pas-
sengers as well as to avoid grounding of aircraft, both of which are directly
related to the profit of the company. Predictive maintenance is the way to
achieve necessary features, such as safety, smoothness of operation, and avoid-
ance of unusual breakdown. The steps in aircraft predictive maintenance in-
volve the collection, handling and processing of data. Each system component
and subsystem component are integrated with different sensors which provide
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real time data to monitor the system performance. The equipment failure can
be determined based on the sensor data and data analytics method. In this
way, the decision of maintenance is transformed into a data science problem,
which is called predictive analytics. Machine learning and decision trees can be
used to analyze the sensor data and predict the failure that may occur during
run time.

We propose a Failing And Not Falling (F&!F) method for classifying the
accidents and incidents according to the attributes collected from the aircraft
system. An accident is an unexpected event that may result in property dam-
age and results in an injury or illness. An incident, however, is an unexpected
event that may result in property damage but does not result in an injury or
illness. Incidents are also called “near misses” or “near hits.” Our method is
based on integrating neural networks with decision trees. A neural network is
placed in each decision node of the decision tree.

In this paper, the dataset is obtained from Boeing 737 aircraft1, 2. The
Boeing 737 is a twin-engine airplane operated in short-medium ranges from
sea level (less than 6000 ft).

The remainder of this paper is organized as follows. In Section 2 we present
comprehensive past research efforts in the field of aircraft maintanance, de-
cision trees, machine learning, and neural networks. Then in Section 3, we
present our proposed method based on neural network and decision trees called
Failing And Not Falling (F&!F). Section 4 describes the extensive experiments
and results with detailed discussion. Finally, the paper is concluded with the
conclusions drawn from the proposed method and obtained results with a few
potential directions of future research work.

2 Related Work

2.1 Aircraft Maintenance

According to federal aviation regulations, all aircraft must undergo mainte-
nance after flying a certain number of hours [10]. Maintenance is carried out
at night to allow for better aircraft utilization, and therefore aircraft remain
overnight at a maintenance location every three to four days, according to the
aircraft type, and a balance-check is performed periodically. After the schedule
is set, the aircraft are routed to fulfill these maintenance requirements [8].

If maintenance is not performed properly, the aircraft may experience an
accident [31,32]. The airline companies must have a strategy to deal with cri-
sis in case of an accident. An adaptive method for crisis ontology design can
be found in [25] which can be used to represent knowledge in rapid response
situations. The technique extends the ontology during a crisis and tailors it to
the needs of the ongoing crisis. The extension of the above method is available

1 https://www.faa.gov/data research/aviation data statistics/data downloads/
2 https://av-info.faa.gov/dd sublevel.asp?Folder=%5CSDRS
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in [26]. The method merges ontologies and logic rules to represent the hu-
manitarian needs and recommend appropriate humanitarian responses. The
main advantage of the method is to identify humanitarian needs and to pri-
oritize humanitarian responses automatically so that the decision makers are
not overwhelmed with massive and unrelated information and can focus more
on implementing the solutions.

Aircraft maintenance scheduling is one of the major decisions an airline
makes during its operation [7]. When a flight schedule is set and aircraft are
assigned to it, the aircraft maintenance-scheduling problem is to determine
which aircraft should fly which segment and when and where each aircraft
should go through the different levels of maintenance required by the Federal
Aviation Administration. The objective is to minimize the maintenance cost
as well as any costs associated with the re-assignment of aircraft to the flight
segments.

A self-regulatory model was developed by McDonald et al. [6] to examine
different safety management systems and safety culture in aircraft maintenance
organizations, with emphasis on the human and organizational aspects. The
model was effective in analyzing the relevant features of each organization’s
safety management system, although it underestimated the roles of planning
and change.

Factors related to situation awareness in aviation maintenance teams were
investigated by Endsley and Robertson [9]. In many environments, situation
awareness was found to be critical for performance and error prevention. The
research showed barriers and problems for situation awareness both across and
within teams involved in aviation maintenance.

A predictive line maintenance optimization of redundant aeronautical sys-
tems is proposed in [30]. The optimization problem formulation was sub-
jected to different wear conditions. The Kalman filter was used for degradation
trends. Minimization of operation cost was performed based on dispatch re-
quirements, delays, cancellations, and equipment costs.

Cognitive error models have looked into the unsafe actions that lead to
many accidents in safety-critical environments [33]. Most models of accident
causation are established on the idea that human errors are in the context
of contributing factors. Yet published information on possible connections be-
tween specific errors and contributing factors is lacking. A survey using a
self-completed questionnaire [11] reported that of a total of 619 safety oc-
currences involving aircraft maintenance, 96% were related to the actions of
maintenance personnel. The research indicated the types of errors involved
and the contributing factors associated with those actions. Each type of error
was linked with a particular set of contributing factors and specific occurrence
outcomes. The associations included links between memory lapses and fatigue
and between rule violations and time pressure.

A short-term planning methodology of the line maintenance activities of
an airline operator, at the airports, during turn-around time was proposed by
Papakostas [13]. The methodology offered decision making for deferring main-
tenance actions that impact the dispatching of the aircraft, with the goals
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of high fleet operability and low maintenance cost. A multi-criteria mecha-
nism assessed a set of generated maintenance plan alternatives on the basis
of health assessment and other information regarding operational and finan-
cial constraints at the operator’s fleet level. An alternative was defined as the
possible allocation of all deferred maintenance tasks to a set of suitable air-
port resources. The decision making criteria were cost, remaining useful life,
operational risk, and flight delay.

Recent statistics on causes of aviation accidents and incidents show that
to increase air-transportation safety the impact of human errors on opera-
tions must be reduced [12]. Aviation maintenance employees work under high-
pressure conditions; they have strict time constraints and stringent guidelines.
The primary advantages of computer-based systems for the training or support
of technicians are that computers store and recall facts and can help humans
clearly understand them. These features can help minimize errors from proce-
dure violations, misinterpretation of facts, or insufficient training. Currently
many factors, such as unwieldy hardware, the need to put markers on the air-
craft, and the need to quickly create digital content, appear to interfere with
effective aviation maintenance implementation in industry.

2.2 Decision Trees, Machine Learning, and Neural Networks

Previous research discussed the mapping of decision trees into a multilayer
neural network structure that can be used for the systematic design of a class
of layered neural networks, called entropy nets [15]. The research described a
number of important issues such as automatic tree generation, incorporation
of incremental learning, and generalization of knowledge acquired during the
tree design phase. The work presented the number of neurons required in each
layer as well as the desired output, thus leading to a faster progressive training
procedure that enables each layer to be trained separately.

Another research compared the efficacy of particle identification in physics
through artificial neural networks and boosted decision trees [16]. On the basis
of studies of Monte Carlo samples of simulated data, the research found that
particle identification with boosting algorithms performs better than artificial
neural networks. In other works, prediction of electricity energy consumption
and sound pressure level was analyzed using traditional regression analysis,
decision trees, and neural networks [17,22].

Comparison of neural networks [24], naive Bayes [21], and decision tree [23]
classifiers for the automatic analysis and classification of attribute data from
training course web pages was performed [18]. The work presented a naive
Bayes classifier and used the same data sample through the decision tree and
neural network classifiers to calculate the success rate of the classifier in the
training courses domain. The results showed that the naive Bayes classifier
was the best choice for the training courses domain.

One of the recent studies integrated Principal Component Analysis (PCA)
with deep neural networks to predict multiple decay state coefficient [27]. The
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results were compared with a different number of hidden layers. Another study
predicted aerofoil self-noise at the early stage of the design using neural net-
works and hybridization of PCA with neural networks [28]. The results were
compared between neural networks, PCA-neural networks, and different re-
gression techniques. The results showed that the PCA-neural network out-
performed all other techniques. In a recent work [29], a method is proposed
to communicate between specialized neural networks. The developed method
utilized independent sets of neural networks trained for specific tasks, while
transferring knowledge among the neural networks that allows them to evolve
chaining the input and output information. The method can allow different
neural networks to be plugged in and knowledge transfer to evolve. It can
also allow additional information to be requested, when the task at hand is
difficult or hard to resolve. The method is known as OINNIONN - Outward
Inward Neural Network and Inward Outward Neural Network Evolution. As
the method can transfer the learning model, it can be useful for predictive
maintenance of aircraft.

Most prior work compared classification methods such as neural networks,
decision tree induction, and linear discriminant analysis [19,20,34,35]. Analysis
of variance is used to identify any significant differences in the results of the
methods. The issues of finding the most appropriate network size and using an
independent validation set to determine when to stop training the network are
also discussed. However, the integration of decision trees and neural networks
as a unique classifying method for aircraft maintenance has not been described
in the literature.

3 Failing & !Falling (F&!F): A Decision Tree and Neural Networks
Classifying Method

3.1 Uniqueness of the Problem

Compared to many other classification problems, the issue of determining a
cause of an aircraft accident or incident usually depends on multiple attributes.
Furthermore, any solution found consisting of a classification method would
not identify the cause but identify the main feature, or subsystems, which
contributed to the accident or incident.

The problem of classification is based on the assumption that many values
of the data are missing. In addition, certain records have fields which might
have been mislabelled due to erroneous handling or just to save time during
the recording of an incident.

Last but not least, an error which leads to an accident could easily cause
a large number of casualties. Since the aircraft types are shared by multi-
ple organizations, the chance of a rare incident reoccurring is relatively high.
Therefore, the classification of an incident at an early stage is critical.
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3.2 Problem Setting

Since we aim to use a decision tree and multiple neural networks for learning
to classify incidents and accidents, the first step is quantifying the input in
numeric values. Many of the inputs are formatted as textual labels or free
text affiliated with the value such as: Aircraft Make, Aircraft Model, and Part
Name. These labels for each input attribute were assigned a numerical value
to represent all possible labels. The numerical value was designed to have a
uniform distribution U(0, 1), with -1 for no value.

The next issue was to define the depth of each neural network in each node
of the decision tree. Due to the success of deep neural networks in multiple
domains, we analyzed how deep the neural network should be to optimize the
results. We analyzed how many hidden layers, n, are required to optimize the
neural network performance. Although theoretically it could be assumed the
deeper the better n −→ ∞, in reality, we show in the experiments (Section
4) that the optimum number of hidden layers is reached fairly quickly at 3-
4 layers. Furthermore, after a fixed number of added hidden neural network
layers, the results suddenly drop to be equivalent to guessing. In our experi-
ments, adding any additional hidden layers above 29 results in a drop to 50% of
the performance results measured, which is equivalent to guessing in a binary
decision tree.

Theoretically, the number of inputs in the neural network should be equal
to the number of variables which are available. The assumption is that the
neural network can learn to ignore the attributes which do not contribute to
the optimization of the solution. In reality, these are two different tasks which
should be handled by different neural networks:

– Classifying the important contributing input variables.
– Optimizing a single decision in a classification.

For classifying the important contributing input variables, a neural network
was trained using all 72 inputs. Once the neural network results have converged
to a fixed value, we evaluate the weights. The weights between the input layer
and the first hidden layer represent the importance of each input variable.
These weights were recorded for each input variable. Then the absolute value
of every weight is taken and the average of these absolute values is recorded
for each variable. The inputs with the highest averages are determined to be
the significant inputs. Input variables with low mean weight value have less
contributing effect to the optimization of the classification and therefore were
removed.

The experiments show that limiting the number of input variables con-
tributed to the performance of the classification. The best number of input
variables can be determined by organizing the input variables in descending
absolute average weight order and either adding or removing one variable at a
time until there is a change in the output performance. It should be noted that
a large mean weight difference does not always correlate to a large difference
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in the performance. However, the descending order of the mean weight is an
important factor contributing to the output performance.

Fig. 1: Integration of Decision Tree - Neural Network in F&!F Method Where
Each Classification Node is a Specialized Neural Network.

3.3 Integrating Decision Trees and Neural Networks

Next, we aim to optimize a single decision in a classification. We integrate the
decision tree approach with neural networks. We create a decision tree with a
neural network at each node of the decision tree, displayed in Fig. 1.

The unification of the decision tree and neural network approach allows us
to integrate the advantages of both methods. The neural network works well
while classifying into categories where the boundaries of classification are less
distinct, but performance drops when there is a large number of categories.
The decision tree works with a large number of categories which are distinctly
classified.

The decision tree is built based on a set of possible results which can
occur (accidents or incidents). For this, we choose the best possible result
attribute with the highest information gain. To define information gain, we
define a measure commonly used in information theory, called entropy, which
characterizes the (im)purity of an arbitrary collection of examples [14].

Entropy H(S) is a measure of the amount of uncertainty in the dataset.

H(S) =
∑
c∈C
−p(c)log2(p(c))
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Where,
S - The dataset for which entropy is being calculated in the current itera-

tion.
C - The set of the classes in S,C = 0, 1.
p(c) - The proportion of the number of elements in class c to the number

of elements in set S.
If H(S) = 0 then the set S is perfectly classified.
Information gain IG(A) is the measure of the difference in entropy from

before to after the set S is split on a result attribute A. This measures how
much of the uncertainty S was reduced after splitting set S on result attribute
A.

IG(A,S) = H(S)−
∑
t∈T

p(t)H(t)

Where,
H(S) - Entropy of set S.
T - The subsets created from splitting set S by result attribute A such that

S =
⋃
t∈T

t.

p(t) - The proportion of the number of elements in t to the number of
elements in S.

H(t) - Entropy of subset t.
The information gain can be calculated for each remaining attribute. The

attribute with the largest information gain can be used to split the set S on
each iteration.

After selecting the attribute with the largest information gain, we build
a neural network based on the previous criteria discussed in Section 3.2. For
each maintenance problem, we construct a neural network which is designed
to classify only if the problem occurs. Each neural network at each node of the
decision tree consists of all the result attributes which could lead to a possible
accident or incident. It should be noted that the result attributes represent
the problem and are different from the input attributes filtered in the previous
section.

Each leaf of the decision tree includes a neural network with a binary
classification task which improves its performance. Since each neural network
is tailored to a specific classification, the overall performance of the system
does not depend on the performance of a single neural network.

The actual implementation does not necessarily require the implementation
of neural networks for all possible problem attributes since many categories
of problems in the area of maintenance can be classified under one classifica-
tion category. Furthermore, a maintenance investigator can sometimes easily
identify the correct cause at a higher level of the classifications.
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4 Experiments and Results

4.1 Data

The Federal Aviation Administration collects all preliminary accident and in-
cident information reported to the Office of Accident Investigation and Preven-
tion. The data includes accident and incident data categorized by the aircraft
manufacturer. The experiments focused on the Boeing 737 dataset.

The dataset included 72 variables used as inputs to each of the neural
networks. Each neural network had a single neuron classifying whether the
record belongs to the specified category. 137,236 records of the Boeing 737
were used in the experiments. The data was split into 75% training, 15%
testing, and 10% validation. The testing data is used to test the accuracy
and F1 of the neural network. The F1 is basically a weighted average between
precision and recall. The measure F1 is chosen as a better representation of our
model’s performance as it takes into account the Precision and Recall values
rather than correct predictions as Accuracy does. The validation data makes
sure that there is no overfitting.

The following Table 1 details the input description. In addition to the 72
variables, the last value, Discrepancy, has a free text description of the accident
or incident. The Discrepancy field was used to validate the value of the neural
network results.

4.2 Data Preprocessing

Before the data is fed into the neural networks, it is first preprocessed so that
it may be interpreted by them. First the data is read from a CSV file in chunks,
about 5000 records at a time, to a Pandas dataframe. Then a set of dictionaries
is created, with one dictionary corresponding to one column/variable in the
data, for mapping unique, non-numeric values in each variable to a numeric
identifier. Then each column is parsed for unique values. If a value is encoun-
tered which is not in the dictionary for a given variable, then it is added to the
dictionary along with a numeric identifier, and the identifier is incremented.
This starts at an identifier of 100 and increases by 100 for each unique value
found in a variable so as to adequately space the numeric values apart when
normalizing the data later. However, when a null value is encountered, it is
assigned -1 instead to separate it from non-null data. Once each variable has
been parsed in a chunk, the dictionaries are used with a mapping function to
convert all the non-numeric values in that chunk to their numeric identifiers.
After this, the chunk is then written to a new CSV file with a similar name
to the unprocessed CSV file to preserve the original. If more data exists in
the CSV file, then another chunk is read and appended to each dictionary.
The final step in the preprocessing stage, once all of the chunks have been
converted, is the creation of a text file containing variable name headers and
all of the numeric identifiers for each variable and which value each identifier
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Table 1: Accident and Incident Data.

Operator Control Number Difficulty Date

Submission Date Operator Designator

Submitter Designator Submitter Type Code

Receiving Region Code Receiving District Office

SDR Type JASC Code

Nature Of Condition A Nature Of Condition B

Nature Of Condition C Precautionary Procedure A

Precautionary Procedure B Precautionary Procedure C

Precautionary Procedure D Stage Of Operation Code

How Discovered Code Registry N Number

Aircraft Make Aircraft Model

Aircraft Serial Number Aircraft Total Time

Aircraft Total Cycles Engine Make

Engine Model Engine Serial Number

Engine Total Time Engine Total Cycles

Propeller Total Time Propeller Total Cycles

Part Make Part Name

Part Number Part Serial Number

Part Condition Part Location

Part Total Time Part Total Cycles

Part Time Since Part Since Code

Component Make Component Model

Component Name Component Part Number

Component Serial Number Component Location

Component Total Time Component Total Cycles

Component Time Since Component Since Code

Fuselage Station From Fuselage Station To

Stringer From Stringer From Side

Stringer To Stringer To Side

Wing Station From Wing Station From Side

Wing Station To Wing Station To Side

Butt Line From Butt Line From Side

Butt Line To Butt Line To Side

Water Line From Water Line To

Crack Length Number Of Cracks

Corrosion Level Structural Other

Discrepancy
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represents. This allows both the user and the software to determine which
identifier maps to which unique value for any given variable. Some variables
are skipped entirely in the preprocessing stage if they are numeric and it has
been decided that their numeric values are significant. The variables which
were not mapped are Aircraft Total Time, Aircraft Total Cycles, Part Total
Time, Part Total Cycles, Engine Total Time, and Engine Total Cycles. We
chose these variables to be skipped as their numeric values would lose mean-
ing if mapped to an arbitrary integer value. For example: Aircraft Total Time
represents the total amount of time the aircraft has been in use. We determine
this to be a potentially significant variable for predicting aircraft incidents.
However, if we were to map a value of 3,892 hours to an integer of 300 and
a value of 1,765 hours to an integer of 700 then the magnitude of usage time
could lose its value. Additionally, as it is unlikely that no two aircraft will
share the same amount of flight time mapping these values to unique integers
could also add unnecessary complexity to the data with the volume of unique
integer values.

4.3 Methods

(a) Tanh (b) Rectifier (c) Maxout

Fig. 2: Activation Functions Used in the Present Study

The following activation functions were used in the experiments:
Tanh - Hyperbolic Tangent Function (Fig. 2a))

f(x) = tanh(x) = ex−e−x

ex+e−x

Tanh with Dropout - Tanh with a dropout activation function of a 0.5 ratio
for each hidden layer.

Rectifier (default) - Positive part of its argument (Fig. 2b).

f(x) = x+ = max(0, x)

Rectifier with Dropout - Rectifier with a dropout activation function of a
0.5 ratio for each hidden layer.

Maxout - Given an input x ∈ Rd, a maxout hidden layer implements the
function (Fig. 2c).
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hi(x) = maxj∈[1,k]zij

where zij = xTWij + bij , and W ∈ Rdmk and b ∈ Rmk are learned param-
eters.

Maxout with Dropout - Maxout with a dropout activation function of a 0.5
ratio for each hidden layer.

Multiple neural network configurations were analyzed for best performance.
For the following experiments, a neural network with 3 hidden layers with 60,
40, and 20 neurons respectively was used.

4.4 Pseudocode - Neural Network

1: CSV Data: Data read in from a preprocessed csv file.
2: trainData: Subset of CSVData used for training neural network.
3: testData: Subset of CSVData used for testing neural network.
4: validData: Subset of CSVData used for validating neural network.
5: nn: H2O DeepLearningEstimator neural network model.
6: nnMetrics: H2O dataframe containing performance metrics from testing the neural

network.
7: resultsCSV : CSV file for containing neural network performance metrics.
8: ImportH2O,H2ODeepLearningEstimator
9: CSV Data = open(”csvfile.csv”, ”read”)

10: H2O.init()
11: H2O.read(CSV Data)
12: trainData = 75% of CSVData
13: testData = 15% of CSVData
14: validData = 10% of CSVData
15: nn = DeepLearningEstimator(hiddenLayers, activationFunction)
16: nn.train(invars, outvars, trainData, validData)
17: nnMetrics = nn.test(testData).performanceMetrics
18: resultsCSV = open(”results.csv”, ”write”)
19: resultsCSV.write(nnMetrics) =0

4.5 Experiments

The dataset is first preprocessed to conduct the experiments. The Pandas
library in Python is used for preprocessing and simulation experiments. The
strings in each column/variable of the dataset are parsed and mapped to an
integer value. The starting value is selected as 100 and is increased by 100
for every unique subsequent string. This process is repeated for every variable
individually. However, in the case of an integer input or floating point variables,
magnitude is important (such as the total flight time of a 737), and the values
are not mapped for that variable and are simply skipped. For all variables, a
null value is mapped to -1. The data set is labeled in the present study. While
classifying the inputs, we used the significant inputs from the root of the
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decision tree where only “maintenance” or “non-maintenance” was classified.
Through further experimentation we determine whether the significant input
is changed at each node of the tree.

The dataset is classified into two categories: whether the problem with the
aircraft occurred during maintenance and not during maintenance. Thereafter,
the data is further classified into whether or not the problem involved cracks
and whether or not the problem involved the fuselage. In this way, by classi-
fying fuselage after classifying maintenance, we mean that we first identified
that the problem occurred during maintenance and then identified that the
problem involved the fuselage.

The first set of experiments analyzed how deep the deep neural networks
should be. We analyzed a binary classification of accident or incident iden-
tification during Maintenance or Non-Maintenance. We increased the neural
network hidden layers from 1 to 100 and checked how the F1 and accuracy
results change. The Stopping tolerance = 0.0000001 was used for all of our ex-
periments. This precise value of stopping tolerance ensures convergence of the
Neural Network with higher performance. These experiments analyzed what
the correct structure of the neural network would be.

The second set of experiments analyzed whether the bigger the data set, the
better the results. We organized the input variables in descending order of the
mean value of the weight connecting the input layer and the first hidden layer.
We increased each variable in descending order of weight value and compared
the Area Under the Curve (AUC), Accuracy, Precision, Recall, and F1 values.
Each of these values was compared with the six types of activation functions.

Fig. 3: Decision Tree - Neural Network Experiment
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Fig. 4: F1 vs. Number of Layers

Fig. 5: Accuracy vs. Number of Layers

The third set of experiments analyzed the advantages of integrating the
decision tree and the neural network methods. An outline of the set of experi-
ments performed is described in Fig. 3. First a neural network was used to per-
form a binary classification into categories Maintenance or Non-Maintenance.
Each of the classified records was then again classified into Crack or No Crack
and Fuselage or No Fuselage. The classification into each of these subcategories
was performed using all the data previously classified into the main category.
In other words, a record from Maintenance and Crack could also belong to
either Fuselage or Non-Fuselage but not to both. As can be seen from Fig.
3, four different neural networks were used to classify to the eight different
sub-classifications.

4.6 Results

Fig. 4 and Fig. 5 display results of the analysis of the appropriate depth of
the deep neural network. Results peak at three hidden layers and continue
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Fig. 6: AUC/Accuracy of All Inputs vs. Significant Inputs

Fig. 7: Average Mean for Leading First Layer Input Weights

around the same F1 (Fig. 4) and Accuracy (Fig. 5) levels until 29 hidden
layers. From this point onward, the results show that the network would be
too deep. The network results show that over 29 hidden layers is equivalent to
guessing in a binary classification. The F1 value becomes slightly above 50%
and the Accuracy slightly below 50%. It seems that a three hidden layer neural
network is accurate and fast enough to perform the task of classification. For
the experiments that we performed the maximum amount of time that the
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(a) AUC vs. Inputs (b) Accuracy vs. Inputs

(c) Recall vs. Inputs (d) Precision vs. Inputs

Fig. 8: AUC, Accuracy, Precall, and Precision vs. Number of Inputs

networks took to train the neural models spanned from 20 to 30 seconds for
each network.

Fig. 6 presents the classification results into the Maintenance and Non-
Maintenance categories as the number of input variables increases. Fig. 6 shows
the AUC and Accuracy of all six activation functions comparing the results
of using only the top 11 mean weight variables versus using all possible 72
variables. The results show the accuracy is almost the same, −0.12%, and up to
4.77% better when using only the top 11 variables. The AUC is less consistent
and varies from −1.76% to 4.44% for using the top 11 identified variables
versus all 72. The results show the advantage of the method of identifying the
top variables before using the neural network as a classifying tool.

Fig. 7 shows the average mean for the leading inputs weight value between
the input layer and the first layer. These identify the main variables which
are relevant for high accuracy results. The top 11 variables appear in the cir-
cumference box. The results show that issues such as Part Make, Receiving
Region Code, and Part Total Time can clearly be identified as the most rele-
vant classifiers. The list of the leading main contributors for the accident and
incident reports ends with Aircraft Total Cycles. The Aircraft Model is already
identified as a less unique classifier for the type of issue involved. These values
included the different models of the Boeing 737.

Fig. 8a presents the AUC as the number of inputs increases. Fig. 8b presents
the Accuracy as the number of inputs increases. The inputs in the x-axis are
arranged in descending order of mean weights leading from the input layer of
the neural network to the first hidden layer. The AUC continues to increase
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(a) F1 vs. Inputs (b) Precision vs. Recall

Fig. 9: F1 vs. Number of Inputs, Precision vs. Recall

as the number of inputs increases up to 16 inputs. However, the accuracy does
not improve over 11 inputs which were identified as the important variables.

The AUC difference can be viewed as a less accurate value for measuring
performance. In this case, it can be attributed to the low number of values
measured to create the curve. This could explain the difference when measuring
the area with AUC versus comparing a single Accuracy result.

Similarly, Fig. 8c presents the Recall and Fig. 8d presents the Precision
as the number of variables with the descending mean weight increases. These
results display that the recall actually declines, from 100% to above 85% as
more variables are added. However, the precision increases and stabilizes after
the top 11 weighted variables are included. The results show that the recall has
a slight drop as more variables are added. However, the precision is determined
by the leading or “more important” variables.

These results can be be viewed more clearly when viewing the F1 value
appearing in Fig. 9a. As the number of highly weighted variables is added the
value peaks up to 11 variables. From 11 variables the F1 is stable at around
90%. Furthermore, the Precision vs. Recall in Fig. 9b shows that most results
are clustered in the top right except for the initial values with high recall.

The results show the correct identification of the important inputs by the
method of classifying mean weights in descending order. The additional input
variables which do not seem to improve the results can be attributed to con-
stant values, variables which are dependent on other inputs, or values which
are inconsistent with the expected results.

Fig. 10 describes the precision versus recall of the lower level classification
of the decision tree presented in Fig. 3. Each neural network performance on
the second classification level is presented.

Fig. 10a shows a very high precision and recall level of classifying a Crack
after previous Maintenance classification has been performed. Similarly, clas-
sifying a record as Non-Maintenance and then classifying the Crack has good
precision and recall results (Fig. 10c). This shows the advantage of using the
decision tree with the neural network to classify correctly well defined cate-
gories.
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(a) Precision vs. Recall for Maintenance and
Crack

(b) Precision vs. Recall for Maintenance and
Fuselage

(c) Precision vs. Recall for Non Mainte-
nance and Crack

(d) Precision vs. Recall for Non Mainte-
nance and Fuselage

Fig. 10: Precision vs. Recall for Maintenance, Crack, and Fuselage

Fig. 11: Methods Comparison

On the other hand, Fig. 10b and Fig. 10d show what happens when the
decision tree and neural network are not aligned correctly. In this case, classi-
fying Fuselage after classifying Maintenance has slightly lower precision versus
recall results. However, the classification of Fuselage after the classification as
Non-Maintenance has been performed is centered around the diagonal, which
represents guessing in a binary classification. This shows the incorrect decision
tree structure. One less likely possible explanation is that all Fuselage classifi-
cations are only identified during Maintenance. Another, more likely, option is
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that this part of the decision tree is not properly constructed. In other words,
Fuselage under Non-Maintenance cannot be classified. This means that the
dataset did not have a sufficient number of cases where problems with the
fuselage occurred during a time when the aircraft was not undergoing main-
tenance, and therefore the present method could not accurately be classified
with our current methods.

At least one more layer of sub-classification needs to be added in order
to correctly identify this issue. Another concept should be added to the deci-
sion tree below Non-Maintenance before trying to identify whether there is a
Fuselage problem.

Finally, Fig. 11 shows the advantage of our F&!F method integrating the
neural networks with the decision tree compared to the commonly used method
which uses just neural networks for classification. The figure shows the pre-
cision and recall as the number of inputs increase. The F&!F method out-
performs the method of using only neural networks for both precision and
recall.

4.7 Activation Function/Hidden Layer Tests

Tests were performed to determine how different activation functions and hid-
den layer architecture contributed to the overall performance of the neural
networks, which was measured through Accuracy, AUC, Precision, Recall,
Precision-Recall AUC, and F1 scores. The activation functions used were Rec-
tifier, Tanh, Maxout, Rectifier w/ Dropout, Tanh w/ Dropout, and Maxout
w/ Dropout, where each of the dropout rates was 0.5. The hidden layer ar-
chitectures all consisted of three layers with differing quantities of neurons in
each layer. The layers began with [40, 30, 10] (the default architecture used
for most other experiments due to its high performance) and subsequent ar-
chitectures tested followed the pattern: [40, 30, 9], [40, 30, 8], . . . , [40, 30, 5],
[40, 25, 10], . . . , [40, 5, 5], [35, 30, 10], . . . , and ended with [10, 15, 5]. These
architecture tests were conducted alongside the activation function tests so
that each architecture was tested with each of the six activation functions.
The tests concluded that a neural network using the Tanh activation function
performed better than the other activation functions used, with each of the
dropout functions performing the worst. The best test resulted in a 92.4675%
accuracy and a hidden layer of [35, 15, 9].

4.8 Pearson/Spearman Correlation Tests

Pearson and Spearman correlation tests were also performed to find statistical
correlation between the variables when comparing them to the discrepancy
column. These tests were run on the enumerated data. Aircraft Total Cycles
was shown to be the most significant variable with both the Pearson and the
Spearman test. These results could be implemented/applied in the future to
find out which significant inputs could be used for training the neural networks.
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Fig. 12: Correlation Heatmap Crack

4.9 Heatmap Information

The heatmaps that are represented in Fig. 12 and Fig. 13 demonstrate the
correlation of every variable to each other using the Pearson/Spearman sta-
tistical correlation algorithm to find out how closely associated each variable
is with another. The closer the number is to 1, the higher the positive linear
correlation is with the variable being compared and the greener the area is
in the heatmap. The closer the number is to -1, the higher the the negative
linear correlation is with the variable being compared and the redder the area
is on the heatmap. When the number is zero, it means that there is no linear
correlation between the two variables and the area is yellow. So, the closer the
number is to | 1 | the more association the variables have with each other.

4.10 Adaptive Learning Rate

The adaptive learning rate H2O uses for its gradient descent algorithm was
tweaked by manipulating two of its factors: Rho, which is the adaptive learning
rate time decay factor, and Epsilon, the adaptive learning rate time smoothing
factor. Rho relates to memorizing past weight updates and affects the influence
of past gradients. Epsilon assists the model with encountering and overcoming
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Fig. 13: Correlation Heatmap Crack Spearman

local minima to more successfully find a global minimum. In our tests with
Rho, we trained and tested the same neural model configuration with Rho
values ranging from 0.01 to 0.99 and incrementing by 0.01 each time. From
these tests we recorded the AUC, Accuracy, Precision, Recall, Precision-Recall
AUC, and F1 score. The tests showed that the model performed logarithmi-
cally better and peaked at 0.99, which is also the default value used by the
H2O Deep Learning model. The same tests were conducted with the Epsilon
parameter, but this time the values ranged from 1E-10 to 1E-5 and the power
was incremented by 0.1 each time. Like the Rho tests, the model performance
improved logarithmically until an approximate Epsilon value of 5E-7. The de-
fault value for Epsilon is 1E-8. These tests were also conducted for the L1
Regularization metric to reduce the possibility of overfitting while still main-
taining adequate model performance regarding the same recorded variables
from the above tests. With a default value of 1E-5, tests were conducted from
1E-6 to 1E-4 with L1 being incremented by 0.1 each time. These tests showed
little to no improvement in the model’s performance, and the conclusion is
that it did not affect model performance in relation to our data.
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5 Conclusion

This paper introduces a maintenance strategy based on the Federal Aviation
Administration (FAA) data in the United States. The problem is addressed us-
ing neural networks. To verify the efficiency of the method, many experiments
have been performed. We tested the method using different architectures, dif-
ferent activation functions, and different hidden layers. The method and the
neural network models are general enough to be applied to any kind of output
data for prediction. The neural network was tested again with important fea-
tures, and the similar prediction results confirm that it successfully identified
the redundant features.

There are many directions of future research continuing from the present
work. One direction is to fine-tune the model to make it adaptive. Other pos-
sible directions of research are to develop a decision tree for maintenance and
air-traffic control, to develop a real time machine learning based maintenance
strategy, and to integrate the developed method with other aircraft data using
transfer learning.
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