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Abstract—Online portfolio selection, one of the major funda-
mental problems in finance, has been explored quite extensively
in recent years by machine learning and artificial intelligence
communities. Recent state-of-the-art methods have focused on
Mean Reversion significantly and have demonstrated outstanding
performance. Another version of the same phenomenon, Median
Reversion, has also performed well and demonstrated its ability
to be robust against noises and outliers. Another important
characteristic is Momentum. In this paper, a Bayesian ensembling
approach to extract knowledge from both Mean Reversion and
Median Reversion simultaneously based on the momentum asso-
ciated with each one is proposed for the online portfolio selection
task. The proposed method demonstrates its effectiveness by
outperforming current state-of-the-art algorithms on several
datasets.

I. INTRODUCTION

Portfolio selection, one of the major fundamental problems
in finance, deals with the allocation of wealth to a set of assets,
the portfolio, so that the investor can attain certain financial
objectives over a given period of time. This problem is studied
in finance and also in mathematics, machine learning, and
artificial intelligence [1]. It is generally studied in light of
two mathematical models: mean-variance theory [2] and Kelly
investment strategy [3]–[5]. Mean-variance theory deals with
the trade-off between return (mean) and risk (variance) and
is mainly suitable for single-period portfolio selection. Kelly
investment is suitable for multi-period portfolio selection.
Unlike any kind of trade-off, Kelly investment simply focuses
on maximizing the expected log return of the portfolio. Recent
work has exploited the concept of Kelly investment, especially
the online portfolio selection.

One of the most significant characteristics in finance is
reversion. It has been extensively studied in recent years in
light of online portfolio selection. These algorithms based on
mean reversion [6]–[9] have performed quite well on real
datasets. Another variant of this property is median reversion
[10]. Using median reversion is an ideal choice in the presence
of noise and outliers. But if the dataset is relatively clean,
using mean reversion is a better choice. Another important
characteristic is momentum. Thus, we have the following

problems: 1) How to exploit reversion and momentum and 2)
When to exploit mean reversion and when to exploit median
reversion.

To address these problems, we propose an approach which
extracts knowledge from both mean reversion and median
reversion, named “Bayesian Ensembled Mean-Median Rever-
sion (BMMR) Based Strategy for Online Portfolio Selection”.
The basic idea is to ensemble both properties using Bayesian
probability, then to learn from mistakes made in the previous
prediction followed by explicit estimation of the portfolio
using the online machine learning approach [11]. The proposed
method outperforms current state-of-the-art methods on many
real datasets in terms of the final cumulative wealth. Also, on
other datasets it makes sure that anyone who invests based on
this algorithm will have greater final cumulative wealth than
anyone who follows a market-oriented approach, invests in
index funds, and uses other algorithms [6], [12]–[14]. Also, the
run time of BMMR is efficient and suitable for high frequency
trading applications [15], [16].

The remainder of the paper is organized as follows. Section
2 describes the on-line portfolio selection setting. Section 3
reviews some recent works done in on-line portfolio selection.
Section 4 describes the proposed BMMR approach in detail.
Section 5 presents the experiments and comparative studies
along with metrics used to measure the performance and the
datasets used to test the performance. Finally, Section 6 offers
some concluding remarks.

II. PROBLEM SETTINGS

A portfolio of m assets has been considered for the purpose
of investment in financial markets. This investment lasts for
n trading periods. On the tth trading period, the price-relative
vector for the m assets of the portfolio is represented by xt
= (xt,1, xt,2, ..., xt,m) where element xt,i represents price-
relative of asset i on period t and xt,i is formulated as ratio of
the closing price of asset i on period t to the closing price of
asset i on period t-1 i.e. pt,i

pt−1,i
. Let xn1 = (x1, x2, ..., xn) be

the sequence of the m dimensional price-relative vector for n
periods starting from the beginning period 1.



The investment in the portfolio on the tth trading period
is represented by portfolio weight vector bt = (bt,1, bt,2, ...,
bt,m). Each element bt,i represents the proportion of the wealth
invested in asset i on the tth trading period. The portfolio is
assumed to be self financed, i.e. it requires financing only
at the beginning of the investment period. It also assumes
no margin or short selling. Therefore, each element of the
portfolio vector is non-negative and all elements sum up to one
i.e. bt ∈∆m, where ∆m = {bt : bt ∈ Rm+ ,

∑m
j=1 bt,j = 1}. The

investment procedure is represented by the portfolio selection
strategy. This portfolio selection strategy is given as: b1 =
{ 1
m , ..., 1

m} and a sequence of mappings Rm(t−1)
+ → ∆m,

t = 2, 3, ... where bt = bt(x1, x2, ..., xt−1) is the portfolio
invested on the tth trading period having knowledge of past
price-relatives of assets of the portfolio xt−1 = {x1, x2, ...,
xt−1}. The portfolio selection strategy for n trading period is
given by bn = (b1, ..., bn).

For the tth trading period, an investment formulated by
portfolio bt leads to portfolio daily return mt, i.e., on the
tth trading period, the wealth increases by the factor of ct
which is given by bTt xt =

∑m
i=1 bt,ixt,i. Every next trading

period, we reinvest the entire wealth accumulated so far and
use price-relatives. This leads to multiplicative cumulative
return of investments. Therefore, after n trading periods, the
investment formulated by portfolio selection strategy bn results
in cumulative portfolio wealth Cn. By nth trading period, the
initial wealth increases by a factor of

∏n
t=1 b

T
t xt. Therefore,

the cumulative wealth by the nth trading period is given by
Cn(bn1 , x

n
1 ) = C0

∏n
t=1(bTt xt) where C0 is the initial wealth,

and the amount of wealth invested to create portfolio in the
beginning is 1.

Now the problem, i.e. online Portfolio Selection, is dealt
with as sequential decision making. The goal of the investor
is to formulate investment strategy bn1 such that the final
portfolio cumulative wealth Cn is maximized. In the beginning
of each tth trading period, the investor has access to historical
daily price-relatives till the last trading period, t − 1. The
investor does not know price relative information of portfolio
assets because the market has not yet revealed the actual
price. We assume that the market reveals the actual price of
assets at the end of the period in the form of the closing
price. So the investor uses the available information up to
the (t − 1)th trading period and formulates strategy bt for
the next daily price-relative xt. The investor keeps repeating
this procedure until the end of the trading period. Finally, the
investment strategy is judged based on final cumulative wealth
Cn. Algorithm 1 summarizes the problem setting.

To define the problem as in Algorithm 1, apart from no
margin/short selling, certain assumptions have been made.
No Transaction Cost: Although every time any change like
buy/sell to any asset of the portfolio is made in the market
it incurs a certain transaction fee, the model does not factor
in transaction fees. No Tax: The model assumes no tax. High
Market Liquidity: The model allows the investor to buy and
sell desired quantities of portfolio assets at the last closing
price. Impact Cost: The model assumes that the portfolio

assets selection strategy suggested by it does not cause major
disruptions in the market.

ALGORITHM 1: Online Portfolio Selection Setting
Input: Initialize Wealth C0 = 1, Investment Strategy b1

={ 1
m , ...,

1
m}, N trading periods

Output: Final Cumulative Wealth Cn
Initialization: t = 1
while t ≤ N do

Investor formulates portfolio bt based on historical
price information (bt−1, xt−1)

Actual price-relative on trading period t is generated
by the market i.e. xt

Portfolio daily return st = bTt xt and update
cumulative wealth Ct = Ct−1×bTt xt

Based on score of investment on tth trading period,
the investor updates its portfolio selection
t = t+ 1

end

III. BAYESIAN ENSEMBLING

Financial data is highly complex in nature and contains
multiple characteristics. The three major long-term character-
istics are reversion, momentum, and repetition of history. Em-
pirically, exploiting reversion leads to superior performance
in terms of final cumulative of wealth. Most state-of-the-art
methods focus on exploiting only one characteristic. The main
hypothesis for the proposed method is that exploiting more
characteristics may lead to more accurate prediction of price
information and better performance. Therefore, the proposed
method tries to exploit reversion and momentum.

These two characteristics are opposite in nature. The rever-
sion characteristic is known as the Follow the Loser approach.
The momentum characteristic is known as the Follow the Win-
ner approach. Using these two characteristics means following
the winning stocks as well as the losing stocks at the same
time, which is a dilemma in itself. So the proposed method
tries to exploit the reversion characteristic more efficiently.
Reversion is exploited by either mean or median. Mean is
a better choice on clean datasets. Median is a better choice
on datasets containing noises or outliers. But the real-world
dataset is mixed, i.e. not very clean, not very noisy. Hence the
decision problem is when to use mean reversion and when
to use median reversion. This decision problem is tackled by
the momentum characteristic. If high momentum is associated
with mean reversion, then mean reversion plays a significant
role in predicting price information. If high momentum is
associated with median reversion, then median reversion plays
a significant role in predicting price information. This way, the
proposed method intelligently tackles the decision problem of
mean vs. median and combines both characteristics.

A. General Framework for Estimating Price Relatives

The first step in portfolio investment requires estimation
of price information of portfolio assets on the next trading



period t+ 1 as accurately as possible. With this information,
the investor would be able to put more capital on profitable
assets. Several methods involve prediction of price informa-
tion, followed by an optimization step. Two recent methods
Online Moving Average Mean Reversion (OLMAR) [9] and
Robust Median Reversion (RMR) [10] have shown that stock
prices possess a multi-period reversion property. This reversion
property is exploited by two different approaches: 1) Mean
Reversion [9] and 2) Median Reversion [10]. Empirically
these two approaches show promising results. The Median
Reversion approach is more robust because it is not affected
by noises and outliers severely unlike the Mean Reversion
approach.

We develop a generalized approach for estimating price
information for the next trading period which exploits mean
reversion and median reversion simultaneously. The approach
proposes Bayesian Ensembling, which effectively exploits the
reversion property from financial data by combining OLMAR
[9] and RMR [10] to make a more accurate prediction of price-
relatives for the next trading period. The Bayesian Ensembling
approach for online portfolio selection involves sequential
Bayesian updating. The general framework for prediction
using BMMR is given as follows:
x̃t+1 = WOLMAR

t+1 ∗ x̃OLMAR
t+1 +WRMR

t+1 ∗ x̃RMR
t+1

such that WOLMAR
t+1 +WRMR

t+1 = 1
where, x̃t+1 is the predicted price-relative on the (t+ 1)th

trading period, WOLMAR
t+1 is the Bayesian weight of OLMAR

on (t + 1)th trading period and is also quantification of
momentum associated with the mean reversion characteristic,
WRMR
t+1 is the Bayesian weight of RMR on (t + 1)th trading

period and is also the quantification of momentum associated
with the median reversion characteristic, x̃OLMAR

t+1 is predicted
price-relative on (t + 1)th trading period using the OLMAR
approach and x̃RMR

t+1 is predicted price-relative on (t + 1)th

trading period using the RMR approach.

B. Sequential Bayesian Updating

Sequential Bayesian Updating provides a way to combine
two different methods. It does so by calculating weights
(or associated momentum) to be allocated to each individ-
ual prediction. The Bayesian weights for each approach are
calculated:
WOLMAR
t+1 = WOLMAR

t ∗ LOLMAR
t+1 ;

Where WOLMAR
t+1 is weight (posterior probability) for the

OLMAR approach on the (t+ 1)th trading period, WOLMAR
t

is weight (prior probability) on the tth trading period, and
LOLMAR
t+1 is the likelihood function for OLMAR approach

on the (t + 1)th trading period. As mentioned, this weight
(posterior probability) is the quantification of momentum
associated with the OLMAR approach.

According to Officer [17], stock returns tend to follow
normal distribution which is an exponential function. So the
Likelihood function for OLMAR on any (t+1)th trading period
is given as:

LOLMAR
t+1 = e

−
m∑
i=1

(x̃OLMARt,i −xt,i)
2

e
−
m∑
i=1

(x̃OLMAR
t,i

−xt,i)
2

+e
−
m∑
i=1

(x̃RMR
t,i

−xt,i)
2

where, x̃OLMAR
t,i is predicted price-relative for asset i for

tth trading period by the OLMAR prediction approach, x̃RMR
t,i

is predicted price-relative for asset i for tth trading period by
the RMR prediction approach, xt,i is the actual price-relative
for asset i for tth trading period as revealed by the market,
and m is total number of assets in the portfolio. Similarly, the
likelihood function and weight function for RMR can be also
calculated.

C. Portfolio Optimization

The next step requires deciding the proportion of the wealth
being allocated to each asset of the stock based on the expected
price-relatives of each asset received from the previous step.
We adopted the idea of Passive Aggressive (PA) Online Learn-
ing [11] to exploit mean reversion and median reversion for
getting the maximized final cumulative wealth. It is similar to
the one used in PAMR [7], OLMAR [18], and RMR [10]. The
equation aims at finding the optimal portfolio by minimizing
the deviation from the difference from the last portfolio, while
satisfying b · x̂t+1 ≥ ε. The formulation effectively exploits
reversion in price-relative information.
bt+1 = argmin

b∈∆m

1
2‖b− bt‖

2 such that b · x̃t+1 ≥ ε (1)

If the constraint of this formulation is satisfied, that is,
if the expected return is higher than the threshold ε, then
the resulting portfolio on the (t + 1)th trading period is the
same as the previous portfolio on the tth trading period. If
the constraint is not satisfied, then it tries to calculate a new
portfolio for the (t+1)th trading period such that the expected
return is greater than the threshold ε, minimizing the distance
of this new portfolio from the previous portfolio, the one on the
tth trading period. The algorithm BMMR explicitly involves
the reversion idea as it requires determination of the price-
relative x̂t+1 for the next trading period (t+ 1)th. Following
the work of [11], [18], [19], the solution of the optimization
problem (1) in terms of Lagrangian multiplier is
bt+1 = bt + λt+1(x̃t+1 − x̄t+1 · 1)
where x̄t+1 = 1·x̃t+1

m and λt+1 = max{0, ε−bt·x̃t+1

‖x̃t+1−x̄t+11‖2 }.
Finally, to ensure that the portfolio bt+1 is non-negative, it

is projected to the simplex domain [20].

IV. ALGORITHM

The first step of the model involves calculation of the
expected relative price on the next trading period. Using the
RMR approach, L1 median is determined as the expected price
for the next trading and price-relative for the next period is
determined as the ratio to L1 price to price on the (t − 1)th

trading period [10]. Algorithm 2 shows steps to determine L1

median. It uses the Modified Weiszfeld Algorithm [21] for it.
Algorithm 3 shows steps to estimate price-relatives of

portfolio assets on the (t + 1)th trading period based on
OLMAR [9]. This algorithm is responsible for exploiting mean
reversion characteristics in the financial market.

Algorithm 4 shows steps to determine final price-relatives
through Bayesian ensembling of mean reversion and median
reversion characteristics of the financial market as given by
Algorithm 2 and Algorithm 3 respectively.



ALGORITHM 2: L1 Median: Determining expected
price-relative on next trading period

Input: Price pt, pt−1, ..., pt−w+1; Maximum number of
iterations m; Tolerance Level λ

Output: Expected price-relative x̃t+1

Initialization: j = 2;
µ1 = median(pt, pt−1, ..., pt−w+1);
‖.‖ represents Euclidean norm
while j ≤ m do

η(µ) =

{
1, if µ = pt−j

0, otherwise
R̃(µ) =

∑
pt−j 6=µ

pt−j−µ
‖pt−j−µ‖

γ(µ) =‖R̃(µ)‖

µ̃ =

∑
pt−j 6=µ

pt−j
‖pt−j−µ‖∑

pt−j 6=µ
1

‖pt−j−µ‖

µ = min(1, η(µ)
γ(µ) ) + µ̃(1− η(µ)

γ(µ) )
+

if (‖µj−1 − µj‖ ≤ λ‖µj‖) then
break

end
end
x̃t+1 = µ

pt

ALGORITHM 3: OLMAR: Determining expected price-
relative on next trading period

Input: window size w, Historical price-relative
information up to tth trading period: xt−1

1

Output: Expected price-relative x̃t+1

x̃t+1 = MovingAveraget(w)
pt

= 1
w (1 + 1

xt
+ ...+ 1

�w−2
i=0 xt−i

)

� is element wise product

Algorithm 5 determines the investment strategy on the
(t + 1)th trading period using price-relative information pre-
dicted by Algorithm 4, Algorithm 3, and Algorithm 2. It is
responsible for deciding how much capital should be invested
in any particular asset of the portfolio on the (t+ 1)th trading
period. It uses an online passive aggressive machine learning
algorithm to decide allocation [9], [11].

Algorithm 6 shows the overall framework to determine in-
vestment strategy on the (t+1)th trading period which exploits
both mean reversion and median reversion characteristics of
the financial market and combines them using the Bayesian
Ensembling approach.

The time complexity of trading algorithms plays a signif-
icant role in a high frequency trading environment where
thousands of transactions take place in fractions of seconds
[22]. BMMR is linear with respect to number of stocks in
the portfolio m and number of trading periods n. Algorithm 2
is implemented in O(l) as it involves a maximum number of
l iterations. Algorithm 3 takes O(m) per period. In addition,
Algorithm 4 takes O(m) per period. The total time complexity
of algorithm BMMR is O(mn) + O(mn) + O(ln), or O(mn)+
O(ln).

ALGORITHM 4: Bayesian Ensembling: Ensembling
price-relatives predicted by Algorithm 2 and Algorithm 3
Input: Historical Price Information: pt1, Historical

Price-Relative Information: xt1, Maximum
Number of Iterations: m, Tolerance Level: λ

Output: Expected price-relative x̃t+1 on the (t+ 1)th

trading period
Initialization: WOLMAR

1 = WRMR
1 = 0.5,

µ1 = median(pt, pt−1, ..., pt−w+1);
Expected Price-Relative given by Algorithm 2

x̃RMR
t+1 = Algorithm 2: LMedian(pt1,m, λ)

Expected Price-Relative given by Algorithm 3
x̃OLMAR
t+1 = Algorithm 3: OLMAR(xt1, w)

Calculate final expected price on (t+ 1)th trading period
using Bayesian ensembling;

x̃t+1 = WRMR
t+1 ∗ x̃RMR

t+1 +WOLMAR
t+1 ∗ x̃OLMAR

t+1

Update weights;

LRMR
t+1 = e

−
m∑
i=1

(x̃RMRt,i −xt,i)
2

e
−
m∑
i=1

(x̃RMR
t,i

−xt,i)
2

+e
−
m∑
i=1

(x̃RMR
t,i

−xt,i)
2

WRMR
t+1 = WRMR

t ∗ LRMR
t+1 ,

LOLMAR
t+1 = e

−
m∑
i=1

(x̃OLMARt,i −xt,i)
2

e
−
m∑
i=1

(x̃OLMAR
t,i

−xt,i)
2

+e
−
m∑
i=1

(x̃RMR
t,i

−xt,i)
2

WOLMAR
t+1 = WOLMAR

t ∗ LOLMAR
t+1

ALGORITHM 5: BMMR: Determining allocation of the
wealth to be invested in each portfolio asset on the (t+1)th

trading period
Input: Threshold Reversion ε, Predicted next

price-relative x̃t+1, Current Portfolio bt
Output: Next Portfolio bt+1

Calculate the predicted Market Return:
x̄t+1 = 1T x̃t+1

m

Calculate hinge loss function:
loss = ε− bt · x̃t+1

Calculate the Lagrangian multiplier:
λt+1 = max{0, loss

‖x̃t+1−x̄t+1·1‖2 }
Update the portfolio:

bt+1 = bt + λt+1(x̃t+1 − x̄t+1 · 1)

Normalize the portfolio bt+1:
bt+1 = argmin

b∈∆m

‖b− bt+1‖2



ALGORITHM 6: Online Portfolio Selection using
BMMR

Input: Window w ≥ 2; price-relative xn1 : From 1st

trading period to tth trading period; Maximum
number of iterations m; Tolerance Level λ;
Threshold Reversion ε; Initial Wealth C0; Initial
Investment Strategy b0 ={ 1

m , ...., 1
m}

Output: Cn: Final cumulative wealth after nth trading
period

Initialization: i = 1; t = 1; Price Information p0 = 1;
Convert price-relative information into actual price
information on any period t

while t ≤ n do
Extract price information from price-relative

information pt = pt−1 · xi
Investor formulates portfolio bt based on historical

price information (bt−1, xt−1, pt−1)
Actual price-relative on trading period t is generated

by the market i.e. xt
Portfolio daily return is given by bTt xt and the

cumulative wealth is updated to Ct = Ct−1 × bTt xt
Investor predicts price-relatives of portfolio assets for

the next trading period t + 1:
x̃t+1= Algorithm 4: Bayesian Ensembling(pt1,xt1,m,λ)

Investor updates its portfolio selection strategy
according to:

bt+1= Algorithm 5: BMMR(ε, x̃t+1, bt)
t = t+ 1

end

V. EXPERIMENTS

A. Datasets

In the experiment, 6 different datasets were used. Each
dataset contains historical relative daily prices of stocks. Each
dataset is publicly available. Moreover, the datasets can ex-
tracted from the public domain like Google Finance and Yahoo
Finance etc. All these 6 datasets represent several financial
markets.

1) NYSE (O): It is one of the oldest and standard bench-
mark datasets for testing any kind of financial opti-
mization problem involving stock prices. It is named
as NYSE (Old) or simply NYSE (O). It was first used
by [23] and later on by [24], [18], [6], [6], [25], [14],
and [13] to devise various types of investment strategies.
This dataset contains 5651 daily price-relatives of 36
stocks listed on New York Stock Exchange Market for
a period of 22 years starting from 3 July 1962 to 31
December 1984.

2) NYSE (N): This dataset is the extended version of the
previous NYSE dataset. It is called NYSE (New) or
simply NYSE (N). It contains historical daily price-
relatives of 23 stocks listed on New York Exchange
Market for period of 6431 trading periods starting from
1 January 1985 to 30 June 2010. It contains fewer stocks

than NYSE (O) contains because some companies were
taken over by other companies or went bankrupt.

3) TSE: This dataset was collected by [6]. It contains
daily price-relatives of 88 stocks from Toronto Stock
Exchange for a period of 1259 trading periods starting
from 4 January 1994 to 31 December 1998.

4) SP500: This dataset was also collected by [6]. It contains
daily price-relatives of 25 companies which have the
largest market capitalization among 500 SP500 compa-
nies for a period of 1276 trading periods starting from
2 January 1998 to 31 January 2003.

5) MSCI: This dataset consists of global equity indices.
These indices are used to make the MSCI World Index.
This dataset is a collection of 24 indices which represent
the equity markets of 24 countries around the globe. The
dataset contains daily price-relatives for a period of 1043
trading periods starting from 1 April 2006 to 31 March
2010. It is maintained by MSCI Inc., previously known
as Morgan Stanley Capital International.

6) DJIA: This dataset is a collection of 30 Dow Jones
composite stocks. It contains daily price-relatives for a
period of 507 trading periods starting from 14 January
2001 to 14 January 2003.

In Table I, these 6 datasets have been summarized.

B. Metrics

Next, we describe various metrics which we used to measure
the performance of our algorithm.

1) Cumulative Wealth: Cumulative Wealth is the aggre-
gate amount that the given investment has generated over
a fixed period of time. The higher its value, the better
the investment strategy.

2) Standard Deviation: Standard Deviation is a measure
of the dispersion of a set of data from its mean. In
finance, it is used to measure volatility of a given
investment strategy. It is widely used as a metric to
estimate the amount of expected volatility. This metric
is quite important for risk averse investors. The lower
the value, the better the investment strategy.

3) Sharpe Ratio: Sharpe Ratio is a measure for calculating
risk-adjusted return, and this ratio has become the in-
dustry standard for such calculations. The Sharpe Ratio
is the average return earned in excess of the risk-free
rate per unit of volatility or total risk. The performance
associated with risk-taking activities is determined by
subtracting the risk-free rate from the mean return. The
higher the value of the Sharpe Ratio, the better the
investment strategy.

4) Calmar Ratio: It is a comparison of the average annual
compounded rate of return and the maximum drawdown
risk of commodity trading advisors and hedge funds. The
lower its value, the worse the performance of investment
on a risk-adjusted basis over the specified time period;
the higher the Calmar Ratio, the better it performed.
In general, the time period used is three years, but this



TABLE I
SUMMARY OF ALL SIX DATASETS FROM REAL FINANCIAL MARKETS.

Dataset Market Region Time Frame #Trading periods #Assets

NYSE (O) Stock USA 3 July 1962 - 31 December 1994 5651 36
NYSE (N) Stock USA 1 January 1985 - 30 June 2010 6431 23

TSE Stock Canada 4 January 1994 - 31 December 1998 1259 88
SP500 Stock USA 2 January 1998 - 31 January 2003 1276 25
MSCI Index Global 1 April 2006 - 31 March 2010 1043 24
DJIA Stock USA 14 January 2001 - 14 January 2003 507 30

can be higher or lower based on the investment under
consideration.

5) Sortino Ratio: It is a modification of the Sharpe Ra-
tio that differentiates harmful volatility from general
volatility by taking into account the standard deviation
of negative asset returns, called downside deviation.
The Sortino Ratio subtracts the risk-free rate of return
from the portfolios return, and then divides that by the
downside deviation. A large Sortino Ratio indicates there
is a low probability of a large loss. So, the higher the
value of the Sortino Ratio, the better the investment
strategy. It is calculated as follows:
Sortino Ratio = <R>−Rf

σd
Where < R > is the Expected Return, Rf is the Risk
free Rate of Return, and σd is Standard Deviation of
Negative Asset Returns.

6) Maximum Drawdown: A Maximum Drawdown
(MDD) is the maximum loss from a peak to a trough of
a portfolio, before a new peak is attained. Maximum
Drawdown is an indicator of downside risk over a
specified time period. It can be used both as a stand-
alone measure or as an input into other metrics such as
“Return over Maximum Drawdown” and Calmar Ratio.
The lower its value, the better the investment strategy.
Maximum Drawdown is expressed in percentage terms
and computed as:

(Trough Value - Peak Value)/Peak Value
The performance of the proposed algorithm has been mea-

sured and presented using all six metrics, but the primary focus
is on Cumulative Wealth.

C. Comparison Approaches
The proposed algorithm has been compared with a number

of existing benchmark algorithms and other non benchmark
algorithms having better empirical performance, introduced
by the Computer Science community. Here, a list of these
algorithms is provided with their parameters as introduced in
their original studies.

1) Market: Simply once buy-then-hold-uniformly. No pa-
rameters.

2) Best Stock: Follow the best performing stock in the
hindsight. Knowledge of the best stock is known in
hindsight. No parameters.

3) BCRP: Follow the Best Constant Rebalanced Portfolio
strategy in hindsight. No parameters.

4) UP: This algorithm was introduced by [23]. We focus
on its implementation by [26]. Its parameters are: δ0 =
0.004, δ = 0.005, m = 100, and S = 500.

5) EG: Exponential Gradient Algorithm with learning rate
parameter: η = 0.05 [25].

6) ONS: On-line Newton Step introduced with parameters:
η = 0, β = 1, γ = 0.125 [24].

7) Anticor: Exploiting Mean Reversion characteristics us-
ing cross-correlation and auto-correlation [6]. No param-
eters.

8) BK: Nonparametric Kernel based moving window strat-
egy with parameters: w = 5, L = 10, and correlation
coefficient threshold ε = 0.1 [14].

9) BNN: Non Parametric Nearest Neighbour based strategy
with parameters: w = 5, L = 10, and pl = 0.02 +
0.5(l − 1)/(L− 1) [13].

10) CORN: Correlation Driven Non-Parametric based strat-
egy with parameters: w = 5, p = 1, and ρ = 0.1 [12].

11) PAMR: Passive Aggressive Mean Reversion with pa-
rameter: ε = 0.5 [7].

12) CWMR: Confidence Weighted Mean Reversion with
parameter: ε = 0.5 [8].

13) OLMAR: On-Line Moving Average Reversion with
parameters: ε = 10 and w = 5 [18].

14) RMR: Robust Median Reversion with parameters: ε =
10 and w = 5 [10].

D. Results

1) Cumulative Wealth: Table II presents the Cumulative
Wealth achieved by all algorithms. BMMR outperforms all
state-of-the-art methods and benchmark methods in datasets
NYSE(N), SP500, and DJIA. In datasets NYSE(O), TSE, and
MSCI, it outperforms all benchmark algorithms and most non
benchmark algorithms.

2) Sharpe Ratio: Figure 1 shows the Sharpe Ratio achieved
by BMMR and benchmarks as well as other state-of-the-art
methods on all six different datasets. Higher Sharpe Ratio is
always preferred. From Figure 1 it can be observed that the
Sharpe Ratio of BMMR is more or less the same as achieved
by other methods. So it can be concluded that for a given
amount of risk, the return produced by BMMR is high, thus
making it a safe investment strategy.

3) Standard Deviation: Figure 2 shows the Standard
Deviation achieved by BMMR and benchmarks as well as
other state-of-the-art methods on all six datasets. Standard



TABLE II
CUMULATIVE WEALTH ACHIEVED BY VARIOUS STRATEGIES ON THE SIX DATASETS. BEST RESULTS IN EACH DATASET ARE HIGHLIGHTED IN BOLD.

Method NYSE (O) NYSE (N) TSE SP500 MSCI DJIA
Market 14.50 18.06 1.61 1.34 0.91 0.76

Best - Stock 54.14 83.51 6.28 3.78 1.50 1.19
BCRP 250.60 120.32 6.78 4.07 1.51 1.24

UP 26.68 31.49 1.60 1.62 0.92 0.81
EG 27.09 31.00 1.59 1.63 0.93 0.81

ONS 109.19 21.59 1.62 3.34 0.86 1.53
BK 1.08E+09 4.64E+03 1.62 2.24 2.64 0.68
BNN 3.35E+11 6.80E+04 2.27 3.07 13.47 0.88
CORN 1.48E+13 5.37E+05 3.56 6.35 26.10 0.84
Anticor 2.41E+08 6.21E+06 39.36 5.89 3.22 2.29
PAMR 5.14E+15 1.25E+06 264.86 5.09 15.23 0.68
CWMR 6.49E+15 1.41E+06 332.62 5.90 17.28 0.68
OLMAR 4.04E+16 2.24E+08 424.80 5.83 16.33 2.12

RMR 1.64E+17 3.25E+08 181.34 8.28 16.76 2.67
BMMR 9.43E+16 4.74E+08 60.97 12.79 14.02 2.77

Fig. 1. Sharpe Ratio

Fig. 2. Volatility Risk - Standard Deviation

Fig. 3. Calmar Ratio

Fig. 4. Sortino Ratio



Fig. 5. Maximum Drawdown

Deviation is considered a metric to measure Volatility Risk.
In the financial market, higher return always come with higher
risk. The volatility risk of BMMR is comparable to the other
algorithms which also achieved nearly the same return. In light
of the cumulative wealth achieved by BMMR, the Volatility
Risk is justified.

4) Calmar Ratio: Figure 3 shows the Calmar Ratio
achieved by all methods. The Calmar Ratio of BMMR is not
drastically low: it is more or less the same as other state-of-the-
art algorithms. Generally a higher Calmar Ratio is preferred.
It shows that BMMR performs as well or almost the same as
other state-of-the-art methods on a risk-adjusted basis over the
specified time period.

5) Sortino Ratio: Figure 4 shows the Sortino Ratio
achieved by BMMR and other methods on all datasets. The
Sortino Ratio achieved by BMMR is quite high. It indicates
that the chance of suffering a large loss is quite low while
following this BMMR based strategy. It confirms that BMMR
is relatively stable in terms of its wealth generation capacity.

6) Maximum Drawdown: Figure 5 shows performance of
all methods based on Maximum Drawdown. Results in several
datasets show that Maximum Drawdown of BMMR is not
significantly high in light of its wealth and is nearly the same
as other state-of-the-art algorithms. The chance of BMMR
declining from its historical peak is relatively low. So BMMR
is not a high risk strategy.

E. Performance Analysis Dataset-Wise

Table II shows the proposed method achieves superior
performance in 3 out of 6 datasets. Performance in each
dataset depends on characteristics embedded in it. We discuss
each dataset individually to find conditions or characteristics
under which the proposed algorithm achieves the superior
performance.

NYSE (O): The oldest benchmark dataset was recorded
from 1962 to 1994 from the New York Stock Exchange.
During this time, sophisticated hardware was not used well
to record data and to process transactions. As a result, any

algorithm using this dataset must be robust to noises and
outliers. Median reversion offers the most ideal choice due to
its robust nature. RMR is entirely based on median reversion
and achieves the most superior performance. The proposed
method sometimes uses mean reversion and sometimes uses
median reversion, but not only median reversion like RMR.

NYSE (N): This dataset was recorded from 1985 to 2010
from the New York Stock Exchange. During this time, comput-
ers were used to record data and to process transactions. The
hardware used at the exchange was relatively sophisticated. As
a result, this dataset is relatively clean, i.e. cleaner than NYSE
(O). Empirical experiments have already shown that reversion
characteristics are quite significant for this dataset. The pro-
posed method uses both mean and median to exploit reversion
characteristics and achieves the most superior performance.

TSE: This dataset was recorded between 1994 and 1998
from the Toronto Stock Exchange (Canada). During this time,
the Canadian stock market was stable, unlike the financial
crisis in the East Asian stock market. Since there were no
major ups and downs, noises, or outliers, there is no need
to use a robust metric like median. In the absence of noises
or outliers, the reversion characteristic is best exploited by
mean. So mean reversion based OLMAR achieves the best
performance.

SP500: This dataset of 25 companies with the largest mar-
ket capitalization among all SP500 companies was recorded
between 1998 and 2003. This dataset of 25 companies include
Internet-based companies like Microsoft, Apple, Verizon, and
Amazon, which suffered from the Dot-Com bubble, while
other big companies suffered from the East Asian financial
crisis. Due to these crises, stock prices of these companies
suffered from major ups and downs and outliers. The dataset is
relatively clean due to the sophisticated hardware used to store
and process transactions. Empirical experiments have shown
that the reversion characteristic is quite significant for this
type of dataset. The proposed method uses both mean and
median to exploit reversion characteristics and achieves the
most superior performance.

MSCI: This dataset was recorded between 2006 and 2010,
when the worst global financial crisis since the 1929 financial
crisis was experienced. During a major global crisis, prices
of all stocks of the portfolio become correlated. This char-
acteristic can be exploited via learning through history, and
less from reversion and momentum characteristics during the
period of a major crisis. So the method which learns from
historic correlation, CORN, achieves the best performance
on this dataset. The proposed method does not exploit this
characteristic, resulting in lower performance.

DJIA: This dataset, recorded between 1998 and 2003,
contains 30 Dow Jones composite stock prices, including
companies like Microsoft, Intel, and AT&T which suffered
from the Dot-Com bubble that caused major ups and downs
and outliers in stock prices. The dataset is relatively clean
due to the sophisticated hardware used to store and process
transactions. As mentioned, the reversion characteristic is quite
significant for this dataset. The proposed method, which uses



both mean and median to exploit the reversion characteristic,
again achieves the most superior performance.

VI. CONCLUSION

This paper proposes a novel multi-period online portfolio
selection strategy BMMR, which exploits the reversion and the
momentum characteristics and tackles the decision problem of
mean reversion vs. median reversion using a Bayesian ensem-
bling approach. The results show that the proposed method
achieves superior performance when the dataset contains the
reversion property and a certain amount of noises/outliers.
The proposed method works well because it exploits reversion
efficiently and also is robust to noises and outliers. The
algorithm is efficient computationally, making it quite suitable
for large scale and high frequency trading. Future research
includes different ensemble learning models like Bagging,
Boosting, and Stacking to tackle the decision problem.
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