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Abstract—Topic evolution is a recently introduced field of 

research as a substitute for a more traditional text-based topic 
evolution, allowing the tracking of more complex evolutionary 
events with the use of network structures. Network-based topic 
evolution showed that the neighborhood characteristics of newly 
introduced topics can be utilized to determine when a topic would 
emerge in a given domain. Predicting emerging topics requires a 
method for generating pseudo-neighbors of previously unseen 
topics as the neighborhood for an emerging topic is not known 
before its appearance. The authors proposed the Descendant-
Aware Clustering algorithm to generate a set of neighborhood 
candidates for future emerging topics, surpassing existing 
algorithms in both performances and computation times. 
Optimizing the algorithm parameters enhances the performance 
even further. Significant performance improvements were 
observed when NSGA-III multi-objective algorithm was applied 
to over 100 research domains. A set of enhanced default values are 
introduced to the proposed algorithm removing the necessity for 
dataset-specific optimization, cementing the position of the 
Descendant-Aware Clustering as the best clustering algorithm for 
detecting ancestors of future emerging topics. 

Keywords—topic evolution, topic prediction, topic emergence 
prediction, multi-objective optimization, scientometrics 

I. INTRODUCTION 
Researchers around the world work tirelessly to introduce 

new knowledge to their scientific communities, gradually 
expanding the domain knowledge with cascading contributions. 
The expansion can be illustrated by an ant colony, where the 
collective input from individual members leads to an expansion 
of the community. Materials detrimental to the expansion such 
as rocks are avoided, while beneficial resources such as water 
are sought after. Research contributions follow similar 
principles, focusing efforts on popular research topics with high 
projected impacts as opposed to the topics with diminishing 
popularity. It is therefore crucial that researchers know the states 
of existing research topics before being able to make higher 
impact contributions. Topic evolution can aid researchers in 
discovering the current state of research topics by detecting their 
evolutionary status such as survivability, maturity, and 
interactions [1].  

Topic evolution detects semantical and relational changes 
between topics over time by analyzing time-specific topic 
models, which are traditionally text-based models generated 
from unstructured documents. Topics are extracted as word 
vectors or embeddings, representing statistical distributions of 
word or topic co-occurrences. While being successful in 
capturing how the semantics of a given topic evolves over time, 
the traditional topic models showed less compatibility when 
evolution between multiple topics are concerned [2]. This is 
because the identity of a topic is directly tied to its semantic 
while a semantic similarity measure is used to link topics in 
different timeslots; one-to-one connection over time tracking a 
single topic can be done, but it fails to deal with many-to-many 
connections over time. The amalgamation of identity and 
semantics also generates another problem that it hampers the 
prediction of new topics emerging in the future, by definition 
having unique semantics previously unseen in the given dataset. 
Identities of such topics remain unknown before the related 
documents are provided to extract their semantics.  

A network-based topic model has been proposed to 
overcome such limitations, detaching the topics’ identities from 
their semantics to enable topic correlation analysis as well as 
topic emergence predictions [3, 4]. Topic identity is represented 
by individual nodes within an evolving topic network 
independent of their semantics, where emerging topics can be 
viewed as new nodes introduced to the network. As topics rarely 
are truly novel, it can be assumed that they are not isolated. 
Newly emerging topics follow the same principle, allowing 
them to be represented by their neighborhood topics (or ancestor 
topics in previous timeslots). Previous research showed that 
such representation accurately reflects the identity of emerging 
topics and ancestors of emerging topics in the future can be 
distinguished from ancestors of existing topics in topic networks 
[5].  

It is infeasible to test all possible subgraph combinations in 
large networks for their likelihood of being ancestors in the 
future. Clustering algorithms such as the Advanced Clique 
Percolation Method (ACPM) [6] were proposed for network-
based topic emergence prediction in order to generate a set of 
clusters resembling ancestors of emerging topics in the future. 
Such algorithms reduce the computational intensity of the 
process by proposing a small set of acceptable candidate groups 



without having direct information on their neighborhood 
membership.  

The authors have proposed the Descendant-Aware 
Clustering (DAC) [7] as an enhanced method of detecting such 
groups by generating overlapping, non-exhaustive clusters 
specifically tailored to reflect the characteristics of ancestors of 
emerging topics. Comparison between the two algorithms in a 
wide range of research domains showed that the DAC 
outperformed not only the general purpose clustering algorithms 
in the task, but showed improvement over task-specific 
algorithms such as ACPM as well. The proposed Descendent-
Aware Clustering algorithm showed higher positive matches, 
maintained its performance longer with increasing match 
threshold, and was shown to be faster and more memory 
efficient. The performance differences were significant in more 
than 100 evolving topic networks each generated for a specific 
research domain, on average with 48k topics and four million 
links over the ten-year period.  

While the Descendant-Aware Clustering showed superior 
performances, many of the DAC’s parameters were not justified 
in the previous publication with mathematical proofs or 
empirical evidence and were imported from other related 
publications. Structural similarity threshold and cluster 
expansion path length came from the Loop Edge Delete 
algorithm [8] where the DAC algorithm was inspired from, for 
example. Clustering postprocessing parameters such as 
maximum number of edges per cluster and cluster merging 
threshold were fixed to the same values as were used by the 
ACPM publication [6] to match the experiment conditions as 
well. This paper is written under the assumption that the initial 
parameters should be optimal and further performance boost can 
be expected through a process of optimization. The cluster 
match precision and recall were the two main performance 
measures used in the previous research and were optimized. 
Two measures are often conflicting therefore a multi-objective 
optimization algorithm is implemented to detect multiple 
parameter combinations with similar results in combined 
measures. Experiments were conducted on 103 topic network 
datasets with distinct histories and research behaviors, which 
were used in the original research for proposing the Descendant-
Aware Clustering. The results showed that the performance 
improvements by optimized parameters are universal in more 
than 100 of them. Parameters individually optimized per dataset 
also led to the discovery of enhanced default parameter values, 
which showed significant performance increase in nearly all 
datasets. 

Section II reviews the related work on network-based topic 
emergence prediction and multi-objective optimizations. 
Section III details the optimization problem and the DAC 
algorithm, and the experiment results are shown in Section IV.  

II. RELATED WORKS 

A. Network-based Topic Emergence Detection Methods 
Topic evolution is a field of research that aims to 

automatically track topical changes in a given document 
collection over time, either with uniformly or irregularly divided 
timeslots [2]. For each timeslot, a set of topics governing 
documents within that time period are generated through topic 

modeling methods [9]. Temporal topic chains are then formed 
over consecutive timeslots by connecting similar topic models. 
Depending on the variations in size and interactions, various 
evolutionary events were detected in the early days of topic 
evolution [10, 11]. While simpler events such as enlarge and 
shrink can be detected by analyzing size changes of a single 
topic chain, more complex evolutionary events such as merge 
and split involve multiple chains, distinguishing evolution 
within a single topic and evolution involving multiple topics 
[12].  

The separation of a single-topic and multi-topic evolution 
led to a computational limitation in topic evolution, as the 
traditional text-based topic models were not well suited to 
distinguish between them. Traditional topic models Latent 
Dirichlet Allocation (LDA) [13] and its variants extract latent 
semantics from a document set in the form of word-popularity 
sets based on the word co-occurrence distributions. Topic 
models are therefore represented as distinct word distributions, 
which are identified for each document [14]. Topics in LDA-
like models are compared by the similarities in word 
distributions. A more recent approach, word embedding [15], 
assigns numerical context to words instead of having topics as 
word distributions and topic similarities are measured in terms 
of vector similarities [16]. In either case, the topic’s identity is 
directly linked to its semantics. This is problematic for multi-
topic evolution detection as semantically similar topics are 
considered to share an identity. Tracking the topic chain allows 
effective detection of content transition of a single topic, but 
cannot effectively track other topics merging into, or split from, 
that single chain as such semantic similarity is translated as 
sharing the same topic identity [3]. There are multiple attempts 
to overcome such limitations, including a two-tiered topic 
evolution where single-topic and multi-topic are identified in 
each tier [1]. Time-spanning global topics are retrieved from the 
whole corpus, representing a set of topics that are present over 
the whole document collection. Local topics, on the other hand, 
represent time-specific topics and are extracted from the yearly 
divided collections instead. The static global topics are matched 
to a series of dynamic local topics at each timeslot having cosine 
membership similarities above a given threshold. The number 
and sizes of matched local topics dictate the evolutionary event 
of the topic chain represented by the global topic; decreased and 
increased numbers of local topics connected to a global topic 
respectively represent the merging and splitting of the topic. 
While having limited success, such approaches were not 
applicable in a wider range of datasets due to their inability to 
adapt to the overall shifts in the topics over time [4]. 

Network-based topic evolution is proposed to overcome 
such limitations by separating the topical identity and their 
semantics and providing a general foundation for a more 
advanced topic evolution research with topic emergence 
identification using underlying network patterns [3, 4]. The 
topics are defined by node structures within a word network 
[17]. This is based on the assumption that inventions and 
subsequent innovations [18] have causal relationships to the 
components used for the invention and their combinations [19]. 
Node prediction based on preferential attachment link prediction 
is proposed to classify whether the nodes in citation networks 
have a connection to a new node in the future [20], labeling the 



new nodes by utilizing the metadata of their neighboring nodes 
[21]. Similar approaches were also made with multi-layer 
bibliographic networks for enhancing the performances [3], 
[22]. A more recent approach attempted topic emergence 
detection by utilizing the structural features of topic ancestors 
with machine learning models [17]. The emergence of a topic is 
defined as a binary classifier whether a given topic is newly 
introduced to the target research field or not, and topics are 
classified based on observed structural features of their ancestors 
in previous years. This approach showed high generalizability 
with high accuracy [4]; however it had limited success on 
predicting the emerging topics due to the fact that ancestors of a 
topic can only be discovered after a topic is introduced to the 
network. Such information is unavailable when predicting the 
future, and use of random subgraphs as candidates is infeasible 
as the exponential number of possible candidates in larger 
graphs.  

The use of traditional clustering algorithms was largely 
unsuccessful at detecting accurate ancestor candidates, as they 
are not bound by the traditional cluster characteristics. The main 
hub of an ancestor group is a single common successor therefore 
they are not guaranteed to be connected to each other. Some 
topics could be popular enough to contribute towards multiple 
emerging topics, so ancestors need to be overlapping, while also 
non-exhaustive as not all topics contribute towards new topics. 
Overlapping clustering algorithms such as the Loop Edge Delete 
(LED) can be used for the task, as it is designed to work on large-
scale datasets with linear time complexity [8]. Edge removal 
based on a structural similarity threshold is iteratively applied to 
divide clusters at each loop, starting from the whole network as 
a single cluster. Removed edges are then looped through to 
dictate cluster overlaps. Such algorithms, however, are not 
designed to identify topic ancestors. The Advanced Clique 
Percolation Method (ACPM) classification algorithm was 
proposed to identify surging topic correlations by generating 
clusters with characteristics similar to their ancestors [6]. A 
novel topic at its embryonic stage is found in the semantic-
enhanced topic evolutionary networks, which is represented by 
its core publications and related author information. Topic 
clusters with notable recent collaborations are regarded as the 
ancestors of such novel topics [23]. The pseudo-clique definition 
of clusters in the original clique percolation method [24] resulted 
in cluster size disparity problems, and the advanced algorithm 
tried to overcome this with additional processes including 
intensity-based clique filtering and neighborhood extraction 
with local maxima.  

B. Multi-Objective Optimization 
There are growing interests in the multi-objective 

optimization (MOO) methods, treating it as a successor to 
single-objective optimization which can better solve real-world 
problems which often come with more than one objective at 
times. Optimization is a prevalent problem in any field where 
multiple variables are involved in solving an issue; it is essential 
that optimal solutions are found algorithmically or 
mathematically for practical purposes [27]. An optimization 
problem can be formalized as a process for detecting the best fit 
value 𝑥𝑥 minimizing, or maximizing a given objective function 
𝑓𝑓(𝑥𝑥)  [28]. The objective function is coupled with a set of 
predefined input parameters, each with a set minimum and 

maximum possible values. Inequality or equality constraints can 
supplement the problem, providing binary conditions within the 
problem parameters that must be satisfied. There were several 
attempts to solve multi-objective problems with single-objective 
optimizations. One approach is to solve each objective as a 
discrete optimization problem, merging the results using self-
adaptive crossovers on the differential evolution algorithm [29]. 
Another approach merges the objective functions together into a 
single objective first. The issue in either approach is that they 
perform poorly when objectives are not positively correlated, 
showing a conflicting relationship instead [30]. 

The MOO methods are designed to solve problems with 
conflicting objectives, producing multiple best solutions if 
necessary, as more than one combination of input values could 
result in outcomes of the same quality. This is achieved by 
determining the Pareto-optimal solutions over the given input 
space. Constraints in conflicting objectives result in constraint 
functions having non-linear and non-convex characteristics, 
therefore more flexible evolutionary algorithms are desired. The 
nature of conflicting objectives results in non-linear, non-
convex constraint functions, leading to the focused efforts in 
using the evolutionary algorithm for its flexible, derivative-free 
nature [31]. State-of-the-art algorithms such as the Pareto 
Archived Evolution Strategy [32], Strength Pareto Evolutionary 
Algorithm (SPEA2) [33], Multi-Objective Evolutionary 
Algorithm based on Decomposition (MOEA/D) [34], and Non-
dominated Sorting Genetic Algorithm (NSGA-III) [35] share 
the similar approaches.  

NSGA-III algorithm is based on its predecessor NSGA-II, 
which is a modified genetic algorithm with changes in the 
mating and survival phase. In each generation, individuals that 
fail to surpass others in any of the objective functions are 
rejected to produce a list of non-dominated candidates. The 
survival of such individuals is then determined by the Manhattan 
distance in the objective space, allowing points on either end of 
the Pareto optimal curve to survive. The outcome is then 
analyzed to detect unrepresented reference direction, which is a 
unit simplex representing the partitioned directions each 
solution can take in the design space. A reference direction 
unrepresented by any of the surviving solutions is filled by 
allowing the closest discarded solution to survive instead; 
distance is measured in a line perpendicular to the target 
reference point crossing over the solution. 

III. METHOD AND EXPERIMENTS 
While the ACPM showed higher performance compared to 

traditional clustering algorithms including overlapping 
clustering such as LED, clique-based calculations made the 
algorithm highly complex, which is not suitable for large 
networks which topic networks often are. The authors proposed 
the Descendant-Aware Clustering algorithm [7] based on the 
understanding that emerging topics can be defined as emerging 
technologies in the bibliometric domain, exhibiting high 
popularity and interactivity [25]. The algorithm tries to 
incorporate topic emergence indicators such as prevalence, 
persistence, growth, and community utilized in a recent study 
[26]. The algorithm works on a top-down approach; structurally 
dissimilar topics are first disconnected, resulting in a number of 
connected components each with highly adhesive intra-



connections. The components are then independently expanded 
and merged if necessary.  

The DAC algorithm is run on evolving topic networks. 
Yearly topic co-occurrence networks are first generated with the 
pace of collaboration [23] as edge weight, where the pace for a 
given year y is calculated as the weighted mean of collaboration 
power over a set evolutionary window ω. This is to reflect the 
recent growth rates in each timeslot, which are often associated 
with emerging topics; harmonic mean is used to calculate 
collaboration strengths instead of arithmetic mean to reduce the 
impact of a few hub topics with extreme size and interactions. 
The pace of collaboration aims to detect recent surges in 
collaborations, penalizing the earlier half of the time window to 
produce regression outcomes. Once the topic network is 
generated, structural similarities of each connected topic are 
calculated based on a ratio of shared neighborhood topics. A 
binary parameter σ dictates the additional use of weighted edge 
information; if set to True, the structural similarity is modified 
by incorporating weighted vector similarity and normalized 
weight to common neighbor size as well. Any edge with 
structural similarity below the structural similarity threshold α is 
removed, which is calculated by the percentile parameter α'. The 
resulting list of connected components is expanded by 
maximizing the PageRank values, adding a neighboring node to 
a component if an average PageRank is increased by that. The 
expansion process is a depth-first algorithm with a set path 
length ε; neighbors of up to length ε can be added to a 
component as the intermediate topics were already added to it. 

 The resulting clusters undergo postprocessing to regulate 
their size and quality; a maximum number of edges per cluster 
m is introduced to represent each cluster with its top m edges 
with the highest weights, while clusters with cosine membership 
similarity above a cluster merging threshold τ are merged into 
one. Once the clusters are generated, they are compared against 
the answer set – actual ancestors for topics emerging d years in 
the future. A cluster and answer pair is set to be a positive match 
when their membership similarity measure is above a threshold 
θ. The answer sets as well as the topic networks have been 
uploaded as python object binary files to the Zenodo repository1. 

Some parameters were not used for optimizations for a 
variety of reasons. The cluster similarity threshold for positive 
matches during the optimization process θ' was predetermined 
to be 0.20 as all tested threshold values θ from 0.01 to 0.75 
resulted in superior performances of the DAC algorithm. It is 
expected that optimized parameters will increase the 
performance over all threshold ranges. The use of additional 
weighted edge information yielded inferior performances 
compared to the unweighted version hence σ was set to False as 
well. The authors used fixed values on these parameters to 
reduce the calculation redundancy as their effect is already 
known. Only the year 2005 has been experimented for the same 
reason as the DAC algorithm’s performances are not sensitive 
to a given year y. While the effect of evolutionary window length 
ω was not previously analyzed, its default value was unchanged 
in the experiments as the authors expect some degree of multi-
year tracking is necessary for analyzing bibliography-based 
datasets as seen in other previous research [3, 4]. The year 

 
1 https://zenodo.org/record/5746108 

distance to the answer set d and the positive match threshold θ 
are only used after the clustering is finished and a range of values 
are tested. Table I lists the predetermined parameters.  

TABLE I.  PREDETERMINED PARAMETERS FOR THE EXPERIMENT. 

Param Description Value 

θ' Positive match threshold 
used during optimization 

0.20 

σ Use of weighted edges False 
y Year the clusters are found 2005 
ω Evolutionary window 5 
d Year distance parameter [0, 1, 2, 3] 
θ Positive match threshold [0.01, 0.02, …, 0.50] 

 
DAC clusters are overlapping and non-exhaustive, which 

can be generated from large and dense networks requiring less 
computational resources compared to other related algorithms. 
Using the default parameters, previous research [7] showed that 
all variations of DAC resulted in higher prediction accuracy 
compared to clusters from Clauset-Newman-Moore, LED, and 
ACPM with identical cluster postprocessing. It consistently 
outperformed other algorithms over 100 different datasets, 
showing that it is not only resource efficient and accurate but 
also applicable to various research domains without manual 
interventions. A larger portion of the actual ancestors was 
matched with DAC’s clusters with higher similarities. 
Predictions were possible for non-consecutive years as well, 
allowing a possibility of multi-year predictions with three-year 
predictions showing an average F1 of 0.4685. 

TABLE II.  DESIGN SPACE PARAMETERS FOR OPTIMIZATION WITH THEIR 
MINIMUM AND MAXIMUM VALUES. 

Param Description Min Max Default 

α' Structural similarity 
threshold percentile 

0.80 0.99 [0.90, 0.95] 

ε Cluster expansion length 1 8 3 

m Maximum edges per 
cluster 

5 50 15 

τ Cluster merging threshold 0.5 1.0 0.7 

The NSGA-III algorithm is run to optimize the DAC’s 
performance in individual datasets using an implementation 
from the PyMoo library [36]. The remaining four parameters are 
used as design parameters, with the minimum and maximum 
values shown in Table II along with the default value used in the 
previous research [7]. Precision and recall are selected to 
represent objective functions as they are two basic accuracy 
metrics and generally conflict with each other. The purpose of 
optimization is to identify a set of parameters maximizing both 
metrics at the same time, which can be used as a dataset-specific 
default parameter value. As an NSGA-III is implemented to deal 
with minimization problems, the objective functions are set as 
the following: 

 𝑓𝑓1 = 1 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, and 𝑓𝑓2 = 1 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟, where  
 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = |𝑚𝑚𝑟𝑟𝑚𝑚𝑝𝑝ℎ𝑝𝑝𝑒𝑒 𝑝𝑝𝑟𝑟𝑐𝑐𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝| |𝑝𝑝𝑟𝑟𝑐𝑐𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝|⁄ , and  
 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 = |𝑚𝑚𝑟𝑟𝑚𝑚𝑝𝑝ℎ𝑝𝑝𝑒𝑒 𝑟𝑟𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝| |𝑟𝑟𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝|⁄ . (1) 



TABLE III.  LIST OF NSGA-III PARAMETERS USED IN THE EXPERIMENT. 

Parameters Value Description 
dim 2 2 objective functions 

p 75 Gaps between consecutive points per objectives 
pop 100 Populations during evolutionary algorithm 
f_tol 0.0025 Termination tolerance for objective movements 

nth_gen 3 Termination tolerance calculation frequency 
n_last 3 Sliding window for determining termination 

n_max_gen 50 Fixed generation for termination 

The 2-dimensional objective space is partitioned into 75 
reference sections, uniformly generated using the Das and 
Dennis’s structured approach [37]. A total of 76 reference points 
are selected as a result on the unit simplex (𝐶𝐶𝑝𝑝

𝑑𝑑𝑑𝑑𝑑𝑑+𝑝𝑝−1 = 𝐶𝐶7576 =
76). A population of points per generation is set to be 100 to 
account for possible variations within each section; a lower 
population size and number of generations would result in a 
faster optimization with lower optimization. Table III shows the 
list of parameters used for the NSGA-III algorithm, including a 
series of termination-related parameters; they are used to reduce 
the computational resources used during the experiment while 
retaining a certain degree of performance. The termination 
criterion is calculated every three generations using the changes 
made over them, which can go up to 50 generations as long as 
better solutions are identified at each stage. The experiment is 
conducted on a desktop computer with AMD Ryzen 7 2700X 8-
core processor (16CPUs, ~3.7GHz) and 16Gb Memory in an 
attempt to show that the DAC algorithm is efficient enough that 
its optimization process does not require station-grade 
computing resources. Multiprocessing is done to fully utilize 16 
CPUs, running 16 processes at a time. As the objective functions 
are not calculated in vectorized matrix operations, starmap 
interfaces are used to allow distributing solution evaluations2. 

The optimization algorithm is run on 103 topic network 
datasets, each representing timestamped topic co-occurrences 
related to a domain topic. The datasets were extracted from the 
Microsoft Academic Graph dataset as of February 2020, using 
103 of the 292 high-level fields of study keywords set by 
Microsoft as domain topics. The resulting datasets had on 
average 48,467 topics and 3,965,339 topic co-occurrences, with 
large standard deviations of 18,259.48 and 1,217,796 [7]. 

IV. RESULTS 
The minimization problem for two objective functions is 

optimized using the NSGA-III algorithm, which results in 
multiple non-dominating solutions per each dataset it’s run on. 
Considering all non-dominated solutions, 𝑓𝑓1  showed lower 
average values than 𝑓𝑓2. Fig. 1 shows the objective functions over 
the 103 datasets, ordered by the best solution with the lowest 𝑓𝑓2. 
As the objective functions are inverse of the two actual 
objectives that were maximized, there are significant differences 
between the optimized precision and recall values. Higher 
precision of 0.7135 compared to the average recall of 0.6153 
indicates that the DAC algorithm at the optimized state produces 
clusters that are more likely to be a positive match, while its high 
degree of filtration results in a lower ratio of the matched 
ancestor groups. The average ratio of the matched clusters 
remained similar over different predicted years with ANOVA 

 
2 https://pymoo.org/problems/parallelization.html 

showing insignificant differences in 𝑓𝑓1 over d with p = 0.7626. 
The ratio of the matched ancestors however significantly 
fluctuates with p < 10E-6, as the number of emerging topics and 
therefore its ancestors are not regularized over different datasets 
as well as over different timeslots. Their variances remain 
relatively small and consistent, indicating that the different 
population sizes between the DAC clusters and actual ancestors 
are the source of lower recall values overall. 

 
Fig. 1. Average optimized objective function values for 103 datasets, ordered 
by ascending 𝑓𝑓2. 

Each of the 103 datasets over four d had on average seven 
solutions, with a variance of 13.25. One iteration of the 
optimization algorithm took 2026.60 seconds on average, 
ranging from 77.33 seconds for environmental ethics with d=2 
to 9370.54 seconds for statistics with d=1. The time differences 
mainly were derived from the size and complexity of different 
datasets; the time difference over different prediction years d 
within each dataset was statistically insignificant with p=0.8321. 
More time doesn’t mean higher improvement as the time spent 
showed weak negative correlations with the optimized model’s 
F1 score (correl=-0.3605).  

 
(a) Algebra 

 
(b) Environmental Planning 

 
(c) Particle physics 

Fig. 2. Three examples of optimized objective spaces when d=0, showing each 
solution as blue dots. 
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Fig. 2 showcases three possible objective spaces with 
multiple solutions, with an optimal example shown in Fig. 2(a). 
The algebra dataset resulted in a curve conforming to the normal 
Pareto-front shape, indicating the conflicting nature of two 
objective functions; an increase in one function decreases 
another covering similar surface areas. The environmental 
planning domain in Fig. 2(b) pictures a more optimized case 
with only three solutions; one intermediate solution with two 
extreme cases. The average of the three solutions resulted in the 
dataset being the 10th highest F1 score out of 103. A lower 
number of solutions in the Pareto-optimal shape means the 
solutions are more clearly presented. On the other hand, several 
bad outcomes were also observed as showcased in Fig. 2(c). In 
particle physics dataset, significant conflicts were only observed 
near the extreme values of either objective function, drawing a 
curve opposite to the normal Pareto-front curve; a small 
decrease in one function led to a greater increase in another, 
suggesting that the assumption of conflicting functions are much 
less obvious in this dataset. Many solutions are therefore not 
competitive with their rival solutions, especially when the 
optimization performance is calculated by the F1 score 
involving multiplication of precision and recall. This is 
validated by the fact that while it is ranked 99th for the 
performance of average solutions, it is the 3rd in terms of 
performance improvements when the best solution is selected 
instead of the average of all solutions as shown in Fig. 3. 
Selecting the best solution based on their F1 score improves the 
performance of other optimized models over different d as well, 
further minimizing the objective function values in all but two 
out of 103 datasets.  

 
Fig. 3. Differences in 𝑓𝑓1 and 𝑓𝑓2 when a solution with the highest F1 score is 
selected per optimization instead of using an average of all solutions, ordered 
by ascending sum of the differences.  

Using the best solutions with minimum objective functions, 
the optimized DAC algorithms were able to generate clusters 
more similar to the ancestors of emerging topics. Fig. 4 shows 
the performance increase made with the DAC parameter 
optimization over the 103 datasets with diminishing order of 
improvements in F1 scores when d=0. Precision and recall 
values are shown as stacked columns, showing that more 
improvements are made in precision with an average 
improvement of 0.2357 compared to an average of 0.1418 
improvements in the recall. The optimized DAC clusters 
showed lower 𝑓𝑓1  in general while more improvements were 
made in 𝑓𝑓2 by selecting the best solutions. Combined with these 

findings, the disparity in the two measures indicates that the 
optimization process in general favors better true positive 
detection, and differences between non-dominating solutions 
are more dependent on the ratio of false positives. The F1 score 
showed a significant net improvement of 0.1948 on average, 
which is followed by a lower yet statistically similar (p=0.7940) 
improvement for detecting ancestors of topics emerging up to 
three years in the future. This performance improvement was the 
result of optimization using a positive match threshold of 
θ'=0.20, therefore is maximized at that threshold.  

 
Fig. 4. Improvements in the DAC’s performance with the dataset-specific 
optimized parameters measured by the increases in precision, recall, and F1 
scores when d=0. F1 scores for different future years are shown in dotted lines. 

The improvements can also be observed over a wide range 
of threshold values θ as shown in Fig. 5. Most of the optimized 
DAC clusters found over 103 datasets showed higher F1 scores 
compared to the default ones, making a normal distribution 
shape centered around the θ=0.20 axis. While utilizing one value 
results in net improvements for most of the cases, the presence 
of outliers with decreased performances such as environmental 
chemistry, cartography, and phychoanalysis indicate that it is 
important to utilize different values of θ instead of choosing a 
single value. Worsening F1 scores indicate that in some cases 
the clusters found with different level of similarity threshold 
have distinct properties, and parameters optimized for the best 
clusters in one θ is not guaranteed to produce the best clusters in 
different θ especially when they are amply distant. 

 
Fig. 5. Improvements in the DAC’s F1 scores measured by running MOO on 
103 datasets over a range of positive match threshold θ from 0.01 to 0.40, with 
d=0. 



TABLE IV.  MEANS AND STANDARD DEVIATIONS OF FOUR DESIGN SPACE 
PARAMETERS OVER 103 DATASETS. 

d α' ε m τ 
0 0.9534 0.03 5.09 1.82 43.40 6.85 0.7427 0.19 
1 0.9519 0.02 5.10 1.84 44.49 6.64 0.7138 0.18 
2 0.9498 0.03 5.23 1.82 43.72 6.65 0.7286 0.17 
3 0.9550 0.02 5.41 1.88 43.95 6.40 0.7159 0.18 

Analysis of the optimized design spaces revealed 
commonalities between the best solutions found over 103 
different datasets as shown in Table IV. The structural similarity 
threshold percentile α' is averaged at 0.95, showing the lowest 
coefficient of variation (CV) with the standard deviation (SD) 
less than 3% of the mean value, suggesting that 95% of the topic 
co-occurrences in a topic network do not have essential 
contributions towards creation of new topics. The maximum 
number of edges per cluster m and cluster merging thresholds τ 
showed larger SD relative to their average with respective CVs 
of 0.15 and 0.25. Their standard deviations, while having larger 
variances, are still within a quarter of their average values and 
are considerably consistent over the datasets. m showed the 
largest changes from the default value used in the previous 
experiment, indicating that the original 15 edges per cluster are 
not fit to represent the ancestors in heavily connected topic 
networks. The optimized τ of 0.73 is similar to the default value 
of 0.7 as the optimized α' matched one of its default values. The 
length of cluster expansion paths ε had the largest relative SD 
with CV=0.35, which is inflated by its integer format and lower 
average values. Up to five cluster expansion iterations were 
encouraged by the optimized models. 

Optimization of multiple parameters is justified by analyzing 
correlations between the parameters and the performance 
metrics. No direct correlation between the three parameters and 
the performance measures, with α' and ε having on average less 
than 0.01 correlation coefficients to precision, recall, or F1 
scores. m showed a more significant negative relationship to F1 
with correl=-0.2324 when d=0, while the coefficient 
diminished down to 0.0292 in the next year. τ was the only 
parameter with a consistent correlation coefficient, showing a 
weak positive correlation to all three measures with coefficients 
ranging from 0.33 to 0.47 for d=0,1,2. It is also positively 
correlated to the amounts of improvements made by 
optimizations, albeit with lower coefficients, indicating that the 
final stage of the DAC is the most crucial.  

 
Fig. 6. Improvements in the DAC’s precision, recall, and F1 scores by using the 
enhanced default parameter values instead of the original default values. 
Precision and recall are stacked, shown in half scales 

The experiment on multiple datasets showed that running the 
multi-object optimization algorithm lead to improvements in the 
classification performances by capturing the dataset-specific 
parameters. Based on this result, it is assumed that there would 
be default DAC parameter values improving performances 
across the datasets. The mean parameter values in Table IV are 
therefore considered the enhanced default values, specific to 
distances to the predicted year which has shown considerable 
variations. Improvements made by the enhanced default values 
are shown in Fig. 6, where results over 103 datasets with four ds 
are ranked by improvements in precision. Improvements in 
precision and recall are shown as a stacked line with half the 
values for the matching axis with the F1 score. The DAC 
algorithm showed steady F1 score improvements in all but one 
iteration (411/412); only computational chemistry dataset in 
d=1 showed a 0.0993 decrease in the F1 score. As the dataset is 
ranked 29th on the original results in terms of performance 
measures, this result can likely be attributed to the randomness 
of using fixed values over different datasets. Three more results 
for astrophysics (d=1), crystallography (d=0), and traditional 
medicine (d=3) showed negative improvements in precision, 
while still showing net positive F1 score improvements due to 
their recall values.  

The improved results showed an extremely high correlation 
to the original results with correlation coefficients ranging from 
0.9647 to 0.9810, indicating that the new default values provide 
non-skewed performance improvements across the various 
datasets. The improved results showed only a moderate 
correlation (corr=0.5218 to 0.5421) to the individually 
optimized results, suggesting that the improvements are made in 
a more uniform fashion and the high degree of improvements 
made in a few datasets are shared by the others. The enhanced 
defaults, of course, are inferior to the parameters individually 
optimized for each dataset showing on average 0.06, 0.05, and 
0.05 reduction in precision, recall, and F1 scores. This and the 
previously mentioned outliers were to be expected and deemed 
not significant enough to diminish the effectiveness of the new 
default parameters.  

 
Fig. 7. The F1 score comparison between the DAC algorithm with the original 
default parameters, DAC with dataset-specific optimization, DAC with the 
enhanced default parameters, and other existing algorithms. 



Fig. 7 visualizes the effects of multi-objective optimization 
on the DAC’s performances in capturing clusters similar to the 
ancestors of emerging topics, which is compared to three other 
existing algorithms as implemented in the previous research [7], 
with the F1 score in the Y-axis and the positive match threshold 
θ in the X-axis. The dataset-specific optimized parameters and 
the averaged enhanced default parameters were used in 
comparison to the original DAC’s default parameters, both 
showing significant improvements over the original DAC result 
which already significantly outperformed existing clustering 
algorithms. They retained their high performance for larger θ as 
well, signifying the importance of parameter optimization as 
well as the general performance of the proposed DAC algorithm. 

In summary, the DAC parameter optimization using the 
NSGA-III algorithm resulted in higher precision and recall 
across various research domains using the positive matching 
threshold of θ=0.20. Precisions and recalls over the 103 datasets 
on average showed 0.2357 and 0.1418 higher values 
respectively, detecting more true positives and fewer false 
negatives when clusters sharing more than one-fifth of their 
members to the true ancestors are marked as positive matches. 
These results were not tied to the threshold θ as improvements 
over the two objectives were consistently observed over a range 
of θ as well. The optimization time varied by dataset size and 
complexity, ranging from 77.33 seconds up to a maximum of 
9370.54 seconds. The enhanced default is proposed to remove 
the necessity of dataset-specific optimizations, with α'=0.95, 
ε=5, m=44, and τ=0.7253 as opposed to the original default 
value of α'=0.95, ε=3, m=15, and τ=0.70. 

V. CONCLUSION 
While the Descendant-Aware Clustering showed superior 

performance as well as computational simplicity across various 
domains, the default parameters previously used by the authors 
were not justified with comprehensive experiment results. The 
authors considered four parameters are utilized in their optimal 
capabilities as their default values were extracted from the 
previous related works. Structural similarity threshold, cluster 
expansion path length, maximum number of edges per cluster, 
and cluster merging threshold were optimized by solving a 
multi-objective optimization problem, maximizing both the 
precision and recall of the extracted clusters. While various topic 
network datasets with distinct histories and research behaviors 
resulted in a number of different solutions, improvements in 
both precision and recall were observed in nearly all of the 103 
experimented datasets. The best solutions in each optimization 
problem showed consistently higher precision and recall when 
compared against the DAC with the unoptimized parameters. 
The F1 score showed a significant improvement of 0.1948 on 
average over all datasets, with statistically insignificant 
differences when predicting multiple years into the future. The 
parameters optimized with a set positive match threshold θ 
conserved their performances over a range of θ as well. Net 
positive improvements were observed in 88.82% of the 
instances with θ from 0.01 to 0.40, drawing a normal distribution 
centered around 0.20 where the optimization is taken place. 

The optimization process was time-consuming when 
substantially large datasets were involved, as topic networks are 
heavily connected large networks. There are research domains 

with significantly larger number of topics and topic co-
occurrences such as computer science or medicine, each making 
evolving topic networks with 180k/320k nodes and 130/170 
million edges. Devices with higher computational resources 
would reduce the time spent, but the inherent complexity would 
still require significant investment in computing resources when 
the Descendent-Aware Clustering parameters are optimized on 
such large datasets. This led to the consideration of utilizing 
dataset-specific optimization results to introduce enhanced 
default as dataset-independent default parameter values, 
removing the necessity for dataset-specific optimization. 
Comparison between the original and enhanced default values 
revealed that the number of edges per clusters m showed the 
largest changes. Relatively smaller differences in α' and τ 
suggested that machine-based optimization was the correct 
course of action as it would have been harder to theoretically 
distinguish such differences with manual calculations. The 
enhanced default parameters resulted in net F1 score 
improvement in 411 out of 412 iterations, validating the positive 
effect of using an optimized parameter set. While higher 
performances were observed when dataset-specific parameters 
are used instead, the differences were relatively smaller 
compared to the overall performance improvement over the 
original Descendant-Aware Clustering, or other existing 
clustering algorithms. 

Future work would include further improvement on the 
Descendant-Aware Clustering algorithm as optimizing the 
parameter values alone resulted in significant changes. Case 
studies on datasets with deteriorated performances such as 
computational chemistry will be done to analyze the responsible 
domain characteristics, which can be incorporated into the DAC 
algorithm to implement a more generic algorithm applicable to 
a wider range of domains, or propose a behavior-specific 
algorithm for domains with distinct research behaviors. Multiple 
solutions could provide more insight into how objective space 
corresponds to design spaces and the parameters with extreme 
objective function values could be utilized to allow more 
detailed parameter configurations according to the user's 
interests. 
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