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a b s t r a c t 

Topic emergence detection aids in pinpointing prominent topics within a given domain, providing 

practical insights into all interested parties on where to focus the limited resources. This paper 

employs the network-based topic evolution approach to overcome limitations in text-based topic 

evolution, providing prospective topic emergence prediction capabilities by representing emer- 

gent topics by their ancestors. A descendant-aware clustering algorithm is proposed to generate 

non-exhaustive and overlapping clusters, utilizing the pace of collaborations and structural sim- 

ilarities between topics with iterative edge removal and addition processes. Over 100 datasets 

specific to a research topic were extracted from the Microsoft Academic Graph dataset for the 

experiments, where the proposed algorithm consistently outperformed existing clustering algo- 

rithms in generating clusters with a higher likelihood of being ancestors to an emergent topic up 

to three years in the future. Regression-based cluster filtering using five structural cluster features 

and topic cluster qualities showed that the prediction performance can be enhanced by automat- 

ically classifying undesirable clusters from previously known data. The results showed that the 

proposed algorithm can enhance topic emergence predictions on a wide range of research do- 

mains regardless of their maturities, popularities, and magnitudes without having access to the 

data in the predicted year, paving a road to prospective predictions on emergent topics. 

 

 

 

 

 

 

 

 

Introduction 

Scientific knowledge gradually expands with continuous research contributions; new discoveries are made to expand existing 
research fields and contribute toward new ones. Not all research is the same, however, as the participants and audiences have
dynamically evolving interests. Topic evolution is a field of research dedicated to identifying how topics change over time, including
survivability, maturity, and interactions between topics ( Chen, Tsutsui, Ding & Ma, 2017 ). Tracking such changes provides insight
into the current and future topical trends in a given research field, therefore, is a useful means to identify topics of high interest
and popularity. Providing information on more prominent topics assists both research and industries, allowing preemptive resource 
investments on topics with growing needs ( Carley, Newman, Porter & Garner, 2018 ). 

Topic evolution captures changes in their semantics and relationships over time by analyzing various data sources such as un-
structured documents and bibliographical datasets with metadata. Topic emergence in topic evolution is a topic evolution event 
where a previously unused topic is introduced to the field ( Chen et al., 2017 ). New topics that experienced the emergence event are
defined as emergent topics for the timeslot. Emergent topics can exhibit some characteristics of emerging technologies ( Rotolo, Hicks
& Martin, 2015 ) such as novel semantics, exponential growth rate, and high projected impact. They can also have connections to
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other characteristics such as a high degree of uncertainty and ambiguity. Emergent topics can materialize on various levels, ranging
from the addition of philosophical re-definitions of the research fields, theoretical improvements for research models, advancements 
in specific technologies, and new algorithms or applications. Such topics could be the outcome of topic evolution within existing
topics; distinct evolutions within them culminated in a topic independent from the known evolution chains within the research do-
main. Topics from other research fields can migrate into a previously unaware research community as well ( Osborne, Mannocci &
Motta, 2017 ). A foreign concept with no semantical predecessors within the domain can be introduced from outside to provide novel
approaches to the existing problems. In summary, emergent topics can manifest either by extensions or introductions; both types of
emergent topics need to be considered for detecting or predicting emergent topics. 

Traditional topic evolution methods mimic human knowledge processing by utilizing text-based topic models, extracting topics 
in a form of keyword vectors, then tracking their changes over time. Topic models are built with statistical word co-occurrences
distributions without having content-independent identifiers. Similar topics are therefore only determined through the language 
model similarities; the most semantically similar topics in consecutive timeslots can be considered as a single surviving topic, with
its semantic evolution determined by capturing the degree and direction of content transitions. The use of semantic similarities
becomes problematic when multiple topics are linked, however, as identities of individual topics are dissolved into their shared 
semantics. Semantic evolution within a single topic and evolution caused by inter-topic relationships are shown with the same
measure, resulting in a poor topical correlation detection ( Gohr, Hinneburg, Schult & Spiliopoulou, 2009 ). Topical identities are tied
to their semantics, therefore new topics are defined as topics with significantly distinct semantics compared to existing topics. This
generates a limitation to topic evolution in terms of predictive capabilities as distinct semantics can only be retrospectively detected
when semantic information is already known ( Jung & Yoon, 2020 ). A semantically unique new topic is, by definition, unseen within
the given dataset. Text-based topic models are therefore capable of detecting new topics as soon as the related textual data are
given, but are inefficient at prospectively predicting new topics appearing in the future before related documents are available. Topic
evolution methods on emergent topics are therefore mostly focused on detections, giving less focus to predictions. Network-based 
topic evolution is proposed to overcome such limitations by separating the topical identity and their semantics and provide a general
foundation for a more advanced topic evolution research with topic emergence identification using underlying network patterns 
( Jung & Segev, 2021 ). 

Emergent topics, be they semantically originated from existing topics within a given research domain, imported from outside, 
or novel to the whole research community, are almost always not isolated; they are used together with other existing topics when
they appear. This can be represented as links within an evolving topic co-occurrence network. Detecting emergent topics in a certain
timeslot, therefore, represents locating previously unseen topics in relation to their neighbors. Evolutionary event detection is done 
by retracing the evolution of topic networks based on the assumption that topic network experiences gradual evolution; many, if
not most, neighbors of new topics are present in past timeslots as well, on which new topics are introduced as a common neighbor
in the future. Emergent topics, or descendants , can therefore be represented by their ancestors , which are the presence of their (pre-
existing) initial neighborhood topics in previous timeslots. Predicting emergent topics in the future is therefore transformed into 
a problem of identifying ancestors of such topics in the present and past. A previous network-based topic emergence identification
method successfully detected emergent topics by training machine learning models with structural properties of their ancestors, 
distinguishing ancestors of future emergent topics from ancestors of existing topics ( Jung, Datta & Segev, 2020 ). This approach was
however limited to predicting emergent topics, as the method requires a set of ancestors, or subgraphs , to classify. Ancestors of future
topics can only be known when the topic network data is available for the future timeslot, hindering prospective prediction into the
future when no such data is given. Brute-forcing the possible combination is infeasible as possible combinations of subgraphs can
reach up to 2 n , when large topic networks can easily have more than 10,000 nodes at a time. 

A Descendant-Aware Clustering (DAC) algorithm is proposed to overcome this limitation and generate a manageable amount of 
topic subgraphs as candidates for network-based topic emergence prediction, without accessing data for the target timeslot. Instead of
predicting emergent topics through their ancestors, the proposed algorithm aims to generate clusters likely to be ancestors for emergent
topics in the future . In this problem, an emergent topic is predicted when a cluster positively matches one of the emergent topics’
ancestor groups in the future. Clusters are detected under a few assumptions. Firstly, non-exhaustive and overlapping clusters are
detected as not all topics contribute to the introduction of new topics. Structural properties found from trained machine learning
models in previous studies ( Jung et al., 2020 ) were incorporated into the clustering algorithm, detecting clusters with a high degree
of activity over multiple years. Prospective topic emergence prediction was enabled by utilizing only ancestor information in previous
years, and its performance has been validated against existing algorithms. DAC algorithm is designed to provide likely ancestors for
emergent topics in the future, which can either be utilized as is or fed to the machine learning models as candidates for further
processing. Data in the future timeslot is not utilized, therefore the clusters can be used to predict emergent topics before related
papers are published. This paper aims to show the generalizability of the proposed method using various bibliographic datasets, each
with a different research focus and interests. The algorithm first calculates the pace of collaboration ( Salatino, Osborne & Motta, 2017 )
to measure structural similarities between topics. Edges between structurally dissimilar nodes were filtered out to signify adhesive 
connections between similar topics, leaving a number of connected components as cluster candidates. The components were then 
expanded and merged to generate a set of clusters. Once clusters were found, each cluster was regularized by edge filtration. Finally,
heavily overlapping clusters are merged to find the final set of clusters. Multiple variations of DAC were implemented using different
parameter values, such as structural similarity threshold percentile and predicted similarity quartile . Finally, a linear regression model
was trained to learn cluster quality representing how similar they are to an emergent topic’s ancestors in the future. Five structural
properties were supplied as independent variables, and clusters’ maximum similarity to ancestor groups was used as a dependent 
variable. Various filtering thresholds were used within the clustering algorithm therefore a range of threshold values were tested to
2 
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analyze their effect on the identified clusters. The proposed DAC algorithm outperformed existing algorithms over 100 topic networks
from the Microsoft Academic Graph 1 dataset evolving over ten years. The DAC clusters showed higher ratios of positive matches to
the answer set, outperforming not only exhaustive and overlapping clustering algorithms but also a clustering algorithm developed 
for the topic emergence detection task. The results indicate that the DAC algorithm is general enough to simulate ancestors of new
topics over a wide range of research domains experiencing gradual topical evolution. Various research strategies were successfully 
captured without constructing domain-specific models, identifying normal patterns of research pertaining to the creation of new topics 
( Zhou, Huang, Zhang & Yu, 2019 ). 

Section 2 reviews the related work on topic emergence prediction and overlapping clustering algorithms. Sections 3 and 4 detail
the proposed Descendant-Aware Clustering algorithm and experimentation, and the experiment results are shown in Section 5. 

Related work 

Topic evolution and detection of emergent topics 

Topic models are integral to topic evolution as automatically identifying evolutionary events requires means of extracting and 
comparing topics in a machine-readable format. Traditional topic models summarize a set of unstructured documents by extracting 
latent semantics in the form of word-popularity sets based on the word co-occurrence distributions. Latent Dirichlet Allocation (LDA)
( Blei, Ng & Jordan, 2003 ) is one of the most widely used approaches to topic modeling, iteratively assigning inter-document word
co-occurrence frequencies to discover topics. Topic models are represented as distinct word distributions, which are identified for 
each document ( Steyvers & Griffiths, 2007 ). Topics in LDA-like models are compared by the similarities in word distributions. Word
embedding ( Bengio, Ducharme, Vincent & Jauvin, 2022 ) is another popular, and more recent, topic modeling approach, assigning
numerical context to words instead of having topics as word distributions ( Levy & Goldberg, 2022 ). Sharing the same numerical
vector dimensions, topic similarities are measured in terms of vector similarities in a given multidimensional space. 

Topic evolution aims to automatically track temporal changes in such topics. A collection of documents is assigned into sequen-
tially ordered sub-collections based on their publication dates, generating a set of timeslots either with uniform or irregular lengths
( Gohr et al., 2009 ). Topic models are generated at each timeslot to summarize its topical state at a given time ( Ding, 2011 ). The topics
in consecutive timeslots are then connected with similarity measures to form temporal topic chains, from which various evolutionary
events can be detected. Dynamic topic models ( Blei & Lafferty, 2006 ) utilized this process in the early days of topic evolution, where
a dynamic topic is defined as consecutive topics chained by their word distribution similarities. Evolutionary events such as enlarge
and shrink are found by analyzing the size changes over sequential neighbors. Automatic technology forecasting ( Porter & Detam-
pel, 1995 ) research captured chained technologies instead, employing various techniques such as extrapolation or fuzzy NLP to use
the trend in a given topic to predict its future states ( Battistella, 2014 ; Newman, Porter, Newman, Trumbach & Bolan, 2014 ). 

More complex evolutionary events such as merge and split require recognizing interactions between multiple such topic chains, 
distinguishing evolution within a single topic versus evolution involving multiple topics as evolutionary theme pattern mining tried 
to capture ( Mei & Zhai, 2005 ). A single topic at a specific timeslot can be connected to multiple temporal neighbors, allowing merge
and split events to occur on top of each other. The use of a two-tiered topic model has been proposed for a better merge and split
detection, where topic chains and topical evolutions are identified in each tier ( Chen et al., 2017 ). Time-spanning global topics are
retrieved from the whole corpus, representing a set of topics that are present over the whole document collection. Local topics, on
the other hand, represent time-specific topics and are extracted from the yearly divided collections instead. The static global topics
are matched to a series of dynamic local topics at each timeslot having cosine membership similarities above a given threshold. The
number and sizes of matched local topics dictate the evolutionary event of the topic chain represented by the global topic; decreased
and increased numbers of local topics connected to a global topic respectively represent the merging and splitting of the topic. The
emergence events are detected when a previously unmatched global topic is matched to local topics in a given timeslot. 

There are several studies dedicated to identifying new topics with varying definitions of topics, from simple words, through end
users’ interests, to consolidated keywords from publication venues. First story detection (FSD) is one of the research tasks of Topic
Detection and Tracking ( Fiscus & Doddington, 2002 ), capturing emergent topics in continuously generated text data in real-time. The
goal of FSD is to search and organize new topics from multilingual news articles or identify the first article introducing the new story
( Allan, Carbonell, Doddington, Yamron & Yang, 1998 ; Zhang, Ghahramani & Yang, 2004 ). For term-based topic evolution visualiza-
tions, the topical similarity is calculated by Euclidean distances between topic centroids. Topic novelties in NSF project awards are
captured when a topic’s distance to other topics passes over the upper range and therefore cannot co-exist with other evolutionary
events ( Zhang, Zhang, Zhu & Lu, 2017 ). Burst term detection monitors a textual data stream to capture rapid frequency growth in
an attempt to capture a new topic in its infancy ( Kleinberg, 2003 ). A multi-dimensional exploration of the research front in question
was also tested by combining burst detection with keyword co-word analysis ( Li & Chu, 2017 ). Other approaches utilized various
definitions of emergent topics, such as word frequency-based research front detection ( Chen & CiteSpace, 2006 ), new topic identifi-
cation using query pattern mining ( Ozmutlu & Çavdur, 2005 ), and integration of publication venues based on keyword similarities
( Furukawa, Mori, Arino, Hayashi & Shirakawa, 2015 ). 

Emergent topics defined as emerging technologies in the bibliometric domain were captured through the use of multi-layer clustering,
using the intersection between VOS citation clusters and co-citation clusters ( Small, Boyack & Klavans, 2014 ). In a more recent study,
1 https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/ . 
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topics with sufficient emergence indicators such as prevalence, persistence, growth , and community ( Garner, Carley, Porter & Newman,
2017 ) were enhanced by authors with emergent publication behaviors. A small number of highly emergent topics were identified from
publication abstract and author-term usages, showing sharp term frequency growth after their first appearance in accordance with the 
innovative stage of technology trend curves such as the Hype cycle. Recombinative innovations were also identified using a hybrid
approach, discerning normal search patterns within a curated domain-specific conceptual model. The Chinese research community 
on AI was analyzed with expert consultations and network centrality measures ( Zhou et al., 2019 ). 

Network-based approaches were proposed where topics are defined by node structures within a word network ( Jung, Lai & Segev,
2016 ). This is based on the assumption that inventions and subsequent innovations ( Schumpeter, 1939 ) have causal relationships to
the components used for the invention and their combinations ( Fleming, 2001 ). Node prediction based on preferential attachment
link prediction is proposed to classify whether the nodes in citation networks have a connection to a new node in the future ( Jung
& Segev, 2013 ), labeling the new nodes by utilizing the metadata of their neighboring nodes ( Jung & Segev, 2014 ). Similar ap-
proaches were made with multi-layer networks for enhancing the performance. Co-author and co-word bi-layer network was used 
to detect recombinations within the information science field, simulating networks with resource allocation link prediction algorithm 

( Zhang, Wu, Miao, Huang & Lu, 2021 ). A 5-layer network combined with a multi-layer clustering algorithm was used with biblio-
graphic coupling, co-citation, and author-citation networks over the human computer interaction field ( Jung & Yoon, 2020 ). A topic’s
ancestors ( Jung et al., 2016 ) were tracked over time, utilizing machine learning models with their structural features for classifying
evolution events observed for their successors. The network-based approach showed high generalizability with high accuracy ( Jung 
& Segev, 2021 ); it, however, had limited prediction power with the required number of input subgraphs reaching infeasible numbers
with larger graphs. Topics defined as keyword clusters ( Balili, Lee, Segev, Kim & Ko, 2020 ) were tracked over time instead for pre-
dictive capabilities but had limited success in detecting emergent topics due to the necessity of managing the corpus with unknown
keywords of new topics. 

Clustering algorithms 

Clustering algorithms divide a given network into smaller groups of similar nodes utilizing structural information 
( Lancichinetti, Fortunato & Radicchi, 2008 ). There are multiple tasks and applications of clustering algorithms; hence multiple
definitions of clusters have been utilized. This is achieved by a malleable definition of similarity that holds clusters together; ex-
amples include structural properties such as modularity or density ( Kaufman & Rousseeuw, 2009 ), geometric metrics such as cen-
troids and vector distances ( Kohonen, 1990 ; Likas, Vlassis & Verbeek, 2003 ), statistical characteristics such as distribution type
( Rasmussen, 2000 ), and external meta-data such as geolocations ( Henriques, Bacao & Lobo, 2012 ). Similarity governs the defini-
tion of clusters, and task-specific algorithms with more narrow clustering definitions generally were more successful than generic 
algorithms ( Fung, 2022 ). 

A recent surge in data sizes has changed the dynamic, however, as many popular algorithms have computational complexities
unsuited for scaling data sizes. Simpler methods such as the k -means algorithm were preferred in large-scale applications as they
had lower complexity and hence were more adaptable in the environment ( Kulis & Jordan, 2012 ). With the number of clusters k ,
all data points join k clusters with randomly generated centers based on their Euclidian distances. The process is iterated after each
cluster’s means are updated with their centroids until no further updates are required. The modularity maximization algorithm is
another simple algorithm capable of dealing with large-scale datasets where the number of clusters is unknown ( Clauset, Newman &
Moore, 2004 ). Starting from individual data points as clusters, adjacent clusters are merged to maximize each cluster’s modularity.
Label propagation employs a similar agglomerative strategy, with each point updating its label to match the majority of its neigh-
bors ( Cordasco & Gargano, 2010 ). One of the limitations of such simple methods is that they assume that all members of the data
points belong to clusters with near-uniform sizes ( Yamaguchi & Hayashi, 2017 ), which often is not the case in large networks with
high densities. Without pre-existing knowledge of the number of clusters needed, existing algorithms often result in a single cluster
containing the majority of the data points due to heavy connections between them ( Jung & Segev, 2014 ). 

Overlapping clustering algorithms allows clusters to not hinge on neighboring clusters, reducing the occurrence of such problems. 
The Loop Edge Delete ( LED ) algorithm is an overlapping clustering designed to work on large-scale datasets with linear time com-
plexity ( Ma et al., 2016 ). Edge removal based on a structural similarity threshold is iteratively applied to divide clusters at each loop,
starting from the whole network as a single cluster. Removed edges are then looped through to dictate cluster overlaps. The Advanced
Clique Percolation Method ( ACPM ) classification algorithm was proposed to identify surging topic correlations ( Salatino, Osborne 
& Motta, 2018 ). A novel topic at its embryonic stage is found in the semantically-enhanced topic evolutionary networks, which is
represented by its core publications and related author information. Topic clusters with notable recent collaborations are then re- 
garded as the ancestors of such novel topics ( Salatino et al., 2017 ). The pseudo-clique definition of clusters in the original clique
percolation method ( Palla, Derényi, Farkas & Vicsek, 2005 ) resulted in cluster size disparity problems, and the advanced algorithm
tried to overcome this with additional processes including intensity-based clique filtering and neighborhood extraction with local 
maxima. However, added processes made the algorithm more complex and not suitable for large networks. 

The descendant-aware clustering algorithm 

The descendant-aware clustering algorithm is focused on identifying possible common ancestors of new descendant topics in a 
domain of interest. Many topical qualities such as popularity, importance, and maturity affect the formation of such candidates; 
few topics will be ancestors of multiple new topics while some others remain un-contributing. Traditional exhaustive clustering 
4 
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Fig. 1. Example of the pace of collaboration calculation with a five-year evolution window. Numbers represent topic frequencies and co-occurrence 

frequency each year. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

algorithms assign all topics to a single cluster and hence are not suitable for detecting ancestor groups. A non-exhaustive overlapping
clustering algorithm is proposed to overcome this issue, utilizing structural similarities in loops to allow algorithms to work with
highly connected networks which are often the case for topics in bibliographical datasets. 

The algorithm is divided into three steps. Bibliographic datasets with publication-topic links are first converted into a year-specific 
topic network, incorporating evolution in previous years. Edges between structurally dissimilar nodes are removed to signify adhesive 
connections between topics. Connected components in the filtered network are then expanded and merged to generate a set of clusters.
Finally, each cluster is regularized by filtering edges and merging heavily overlapping clusters. 

Generate topic networks from a bibliographic dataset 

A bibliographic dataset is defined as a dataset containing publication records with related metadata; in this paper research topics
are assigned to publication records in a form of metadata. The DAC algorithm is proposed with the assumption that interaction
between topics alone is sufficient for performing the task at hand and access to their semantic information is unnecessary. The topics
can either be manually assigned topics such as keywords or automatically detected topic models as long as a single channel is utilized
throughout the process, having many-to-many connections to the publications. None of the metadata is used in clustering algorithms
and hence is not required for other than identification purposes. 

A given bibliographic dataset is first converted into a network format by defining topics as nodes n 𝜖 N and topic co-occurrences
as edges e = ( u,v ) 𝜖 E. Topic co-occurrences are observed when a pair is linked to a common publication, and edge weights W are
measured as topic co-occurrence frequencies. Topics and co-occurrences that appeared in given year y are combined to form a topic
network G y with the non-zero occurrence and co-occurrences frequencies denoted as node and edge weights W ( n y ) and W ( e y ). 

𝐺 𝑦 = 

(
𝑁 𝑦 , 𝐸 𝑦 

)
, 𝑎𝑛𝑑𝑊 

(
𝑛 𝑦 
)
∈ 𝑁 

+ , 𝑊 

(
𝑒 𝑦 
)
∈ 𝑁 

+ (1) 

Topics are dependent on predecessors and therefore multiple previous years should be considered when building a topic network
to generate more accurate ancestors. Evolutionary window 𝜔 is defined to represent the number of previous years that are used to
generate a year-specific topic network T y . 𝜔 governs the length of past histories considered in building the topic network; in the
basic scenario, 𝜔 = 1 would indicate that only the current year y is considered without tapping into further historical behaviors.
The pace of collaboration ( Salatino et al., 2017 ) is calculated to incorporate topic co-occurrence patterns in previous networks as
it is shown to signify the rapid growth rate often associated with emergent technologies. Node weights are first merged into edge
weights by incorporating the strength of collaboration the edge represents, which is calculated as a harmonic mean between edge
nodes normalized by the edge weight. The harmonic mean is used in an attempt to mitigate the effect of extremely frequent outlier
topics with high co-occurrences with many others. 

𝑆 𝑦 ( 𝑒 ) = { 𝐻 𝑎𝑟𝑚𝑜𝑛𝑖𝑐𝑀 𝑒𝑎𝑛 ( 𝑊 ( 𝑒 ) ∕ 𝑊 ( 𝑣 ) , 𝑊 ( 𝑒 ) ∕ 𝑊 ( 𝑢 ) ) |∀𝑢, 𝑣𝜀𝑁 𝑦 , 𝐸𝑒 = ( 𝑢, 𝑣 ) 𝜀𝐸 𝑦 } (2) 

Previous co-occurrence trends affect the formation of new topics. Topics with growing popularity are more likely to contribute
towards the introduction of new ones with enough research impact, as the focused research interest in the topics will be extended
to the new topics. Topics with declining popularity indicate otherwise, having not only a lower probability of participating in the
generation of new topics but also having less research impact to convey. The strength of collaborations over the unilateral window
with length 𝜔 in the past are then combined to capture such changes in the pace of popularity in a form of a regression slope for topic
co-occurrences. A centered year order is used to weight the values at different years; starting from the most recent year y , diminishing
weights are allocated for past years reaching negative values after the midpoint in the window 𝜔 . This is to grant more emphasis on
recent behaviors while penalizing the distant past for a better regression outcome. Fig. 1 illustrates an example of how the pace of
collaboration is calculated to be used as edge weight in the final topic network when 𝜔 = 5 . The centered year order starts from + 2
for year y reaching down to − 2 for y-4 . For a list of evolution window years l = ( y – 𝜔 , y ], the pace of collaboration is denoted by 

𝑃 𝑦 ( 𝑒 ) = ( 
∑

𝑙 
( ( 𝑦 − − ̄𝑦 ) × 𝑆 𝑦 ( 𝑒 ) )∕ 

∑
𝑙 
( 𝑦 − − ̄𝑦 ) 2 ) (3) 

where y ̄is the mean value of years used in topic network generation. This results in a topic network T y with non-weighted nodes
which are more commonly used for clustering, representing the first-degree linear regression results with normalized years. P y ( e ) < 0
indicates a negative frequency slope over time, and all edges with negative collaboration paces are removed from the topic network.

𝑇 𝑦 = 

(
𝑁 𝑦 , 𝐸 𝑦 

)
, ∀𝑃 𝑦 ( 𝑒 ) 𝜀 R 

+ (4) 
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Detect overlapping topic clusters 

Once the topic network is built from a bibliographic dataset, overlapping clusters are found with a structural clustering approach.
Structural similarities between all node pairs are first calculated, where the edges can be either unweighted or weighted. Common
neighbor size ( Ma et al., 2016 ) represents the ratio of friends shared by a node pair, which is calculated by normalizing the number of
their common neighbors with the geometric mean of their neighborhoods. It does not require edge weight information and therefore
is used as the structural similarity value for unweighted networks . With the neighborhoods of a node n in year y denoted by ᴦ y ( n ), the
unweighted structural similarity of a node pair ( u,v ) is calculated as 

𝜎𝑦 ( 𝑢, 𝑣 ) = |Γ𝑦 ( 𝑢 ) ∩ Γ𝑦 ( 𝑣 ) |∕ |Γ𝑦 ( 𝑢 ) |×|Γ𝑦 ( 𝑣 ) |1∕2 (5) 

which can be replaced by 𝜎y ( e ) for edge e connecting the pair. 
Additional considerations are needed to deal with weighted networks as edge weights are often as important as the edge presence.

This is achieved by multiplying weighted vector similarity and normalized weight to common neighbor size , reflecting the pace of collab-
oration between the paired nodes. Weighted vector similarity represents the similarity between the given nodes’ collaboration patterns 
and their respective neighbors and is calculated as cosine similarity between edge weight vectors from each pair and their common
neighbors. A pair of nodes can share no common neighbors, therefore each node in a pair is considered a neighbor to its counterparts.
This ensures that there is at least one shared edge in any situation resulting in a non-zero outcome. Normalized weight represents the
relative pace of collaboration between the given node pair, normalized by the maximum pace of collaboration in a given topic net-
work. It is expected that larger values of both the weighted vector similarity and normalized weight would be observable for structurally
similar nodes. Both variables range from 0 to 1 therefore the overall similarity will be lowered with significant diminishing values
for dissimilar pairs. The weighted structural similarity of a node pair ( u,v ) in y is calculated as 

𝜎y 
’ ( u, v ) = 𝜎y ( u, v ) × vecs ( u, v ) × normw ( u, v ), vecs(u, v) = Z y (u, v) ∙ Z y (v, u) / ||Z y (u, v)|| ||Z y (v, u)||, 

normw ( u, v ) = P y ( u, v ) / max(P y ( u, v )) where 

𝑍 𝑦 ( 𝑎, 𝑏 ) = 

[
𝑃 𝑦 ( 𝑎, 𝑥 ) ∀𝑥𝜀 Γ𝑦 ( 𝑎 ) ∩ Γ𝑦 ( 𝑏 ) 

]
(6) 

with each component shown per line. 
Edge filtering is conducted as a next step to remove weak links from the network. This is especially necessary when working with

dense networks, as an average of 88.54 edge-to-node ratio was observed over the 103 topic networks used in the paper. Structural
similarity threshold 𝛼 is used to filter out all edges with insignificant structural similarities ( 𝜎y ( e ) < 𝛼), which are removed from
T y along with any isolated nodes after edge removal. 0.381% of the topics were classified as emergent topics on average over the
experimented datasets therefore a majority of the edges would be insignificant even with the high degree of edge-to-node ratio.
Structurally dissimilar nodes are disconnected, transforming a dense topic network into a set of multiple connected components each 
sharing high structural similarities within them. 

𝑇 𝑦 = 

(
𝑁 𝑦 , 𝐸 𝑦 

)
, ∀𝑒 𝑦 = ( 𝑢, 𝑣 ) 𝐸𝜎𝑦 ( 𝑢, 𝑣 ) ≥ 𝛼 (7) 

More structurally homogeneous components remain as 𝛼 increases, effectively rendering the connected components as clusters 
consisting of structurally similar nodes. A fixed 𝛼 value would not perform well over multiple networks as different topic networks
show various levels of structural similarities, therefore a structural similarity threshold percentile 𝛼’ is introduced; 𝛼 is calculated as the
minimum threshold value that satisfies 𝛼’ th percentile. Components with three or fewer nodes are considered too minor and were
disregarded from further processing. Such an approach, however, is limited in that only direct similarities are measured. A node
can be excluded when its connection to a cluster is diluted over multiple connections. Such nodes can be beneficial to clusters even
when there are no links with similarity values > 𝛼. Connected components are therefore expanded to capture non-direct structural
similarities between them and their neighboring nodes. 

Connected component expansion is done based on the PageRank ( Page, Brin, Motwani & Winograd, 1999 ) value maximization,
using a static value calculated across T y . For each connected component c ⊂ N y , an average PageRank score of its member nodes is
compared against PageRank scores of boundary nodes Γy ( c ) which are a non-overlapping neighborhood nodes for all members of a
component c in the original topic network before edge filtration. A boundary node v is added to the connected component c if its
score PR ( v ) is greater than the component’s average |PR ( n )|; the PageRank from the original T y is used to consider both the removed
and remaining nodes. 

∀𝑣𝜀 Γ𝑦 ( 𝑐 ) , 𝑐 = 𝑐 + 𝑣𝑤ℎ𝑒𝑛𝑃 𝑅 ( 𝑣 ) > |𝑃 𝑅 ( 𝑛 ) |∀𝑛𝜀𝑐 (8) 

The expansion process is done from the perspective of clusters, without considering the structural similarity values of the removed
edges. This is done to capture the importance of individual nodes as well as their similarities. The expansion process in Eq. (8) is
repeated 𝜀 times to allow additional paths of maximum length 𝜀 to be added to any given component. The resulting connected
components are defined as topic clusters , which are non-exhaustive and can overlap. 

Cluster postprocessing and evaluation 
Postprocessing is done once the clusters are identified to regularize the cluster size ( Salatino et al., 2018 ). The highly dense nature

of the topic networks results in very large clusters dwarfing smaller clusters and skewing structural properties. A maximum number
of edges per cluster m and cluster merging threshold 𝜏 are used for postprocessing, each reflecting the ratio of less influential topics
6 
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Table 1 

Five features used for training linear regression models. 

Feature Description 

#nodes Number of nodes in a component 

#edges Number of edges in a component 

cohesion Ratio of internal and external edges 

deg Mean degree in a component 

pr Mean PageRank in a component 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

within a cluster and how tolerant clusters are in sharing common topics. Modifications to these variables will result in clusters with
different topical coverage; larger clusters will result in lower precision in exchange for higher recall. 

Edge pruning is done under the assumption that the collaboration activities between topics affect their importance within the 
cluster. Edges in each cluster are first sorted by their pace of collaboration weight P y ( e ), and top m edges with the highest weights
P y ( e ) are selected. The rest of the edges are discarded along with any nodes that become isolated as a result of edge deletion; only
the core structure of each cluster is extracted, allowing a single to be disconnected. Cluster merging is done afterward to consolidate
clusters with high overlap. Jaccard similarities between all cluster pairs are calculated using the membership node size and overlap,
and any pair with similarity > 𝜏 are considered similar and merged into a single cluster instead. The merging process is repeated after
initial cluster pairs are exhausted until no more merging can be done. Post-processed clusters are validated by matching resulting
clusters against an answer set, actual ancestors of emergent topics in the same y . Jaccard similarity is again used to measure cluster
similarities; the similarity between i th cluster C y,i, and j-th answer set A y,j in year y is calculated using their union and intersection
sizes as shown in Eq. (9) . 

𝐽𝑎𝑐 𝑐 𝑎𝑟𝑑 ( 𝑖, 𝑗 ) = |𝐶 𝑦,𝑖 ∪ 𝐴 𝑦,𝑗 |∕ |𝐶 𝑦,𝑖 ∪ 𝐴 𝑦,𝑗 | (9) 

Outcome values range from 0 to 1, with 0 showing zero similarity and 1 showing identical membership. A cluster is considered a
positive match when its similarity to any answer set member is above a given cluster similarity threshold 𝜃. 

Evaluate topic cluster quality 

Regression models are trained to evaluate cluster qualities , which are measured as the maximum membership similarities they have
with the actual ancestors. Retrospective emergent topic detection is performed to test the possibility of multi-year prediction as the
similarity to the actual ancestors in the future equates with the likelihood of a given cluster being the ancestor of an emergent topic
in the future as well. Year distance parameter d represents the year distance between the cluster and answer sets and dictates how
much future is being predicted; d = 0 indicates the clusters are analyzed in the same year, while d > 0 indicates the clusters are used
to predict emergent topics in the future year y + d using their ancestors in the time period indicated by y . 

Multiple regression models were used in the previous research for a binary classification problem, predicting whether given 
ancestor topics have an emergent topic as their common future neighbor using their structural properties; the Linear Regression (LR)
model showed high-accuracy results ( Jung et al., 2020 ). While the tasks are not identical, this is in essence measuring how likely
the found clusters are to have emergent topic s as their common future neighbors. The authors believe similar models would perform
well, and the LR model is selected for this experiment. Five cluster features shown in Table 1 were used as independent variables
when training an LR model for each y , measuring the structural properties of detected clusters in y and future years. All features are
standardized to have a mean value of 0 and a standard deviation of 1 to reduce the effect of having features with different value
ranges. 

Each cluster’s maximum Jaccard similarity to an answer set is used as a dependent variable cluster quality . The year distance
parameter d is used to capture the cluster quality for years [ y,…,y + d ] by comparing answer sets [ A y ,…, A y + d ] to C y as shown in
Eq. (10) . The variables in the last year y + d are then used as the test set, while the data in years y to y + d -1 are used as the training
set. With varying degrees of d , the independent variable varX and dependent variable varY are generated as 

varX y ( d ) = C n,i [# nodes , # edges, cohesion, deg, pr ], 
varY y ( d ) = max(| C n,i 

⋂
A m,j | / | C n,i 

⋃
A m,j |), 

∀𝐶 𝑛,𝑖 𝜀𝐶 𝑛 ∀𝐴 𝑚,𝑗 𝜀𝐴 𝑚 𝑤ℎ𝑒𝑟𝑒𝑦 ≤ 𝑛 < 𝑦 + 𝑑, 𝑚 = 𝑦 + 𝑑 (10) 

Experiments 

Preprocessing dataset 

A heterogeneous bibliographic dataset called Microsoft Academic Graph (MAG) ( Sinha et al., 2015 ; Wang et al., 2019 ) was
extracted to generate a set of datasets each focused on a specific research topic. While it is scheduled to be retired at the end of
2021 and the dataset is not going to receive additional data input afterward, the records up until the late 2010s were comprehensive
enough to be competitive with other major bibliographic search engines such as Google Scholar or Scopus ( Hug, Ochsner & Brändle,
2017 ). The MAG dataset was used as it allowed bulk download of a data snapshot weekly, and a version of MAG in February 2020
is downloaded for preprocessing through Microsoft Azure Databricks. 
7 
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Topics independent of research domains were used in this paper even though domain-specific terms such as author-assigned key- 
words are shown to produce better quality topics ( Salatino, Osborne, Thanapalasingam & Motta, 2019 ). This is to minimize the effect
of semantic variations between domains as well as term variations. The MAG provides a hierarchical ontology for document-assigned 
topics named fields-of-study (FoS) ( Shen, Ma & Wang, 2018 ), each representing different research concepts found within the recorded
research articles. A six-level FoS hierarchy is generated and updated monthly using Wikipedia articles, applying knowledge base type 
prediction methods along with graph link analysis and convolutional neural network techniques. Then the recorded documents are 
processed each week with large-scale, multi-level text classifications to update the FoS-document tagging relationships. The FoS rep- 
resents dataset-wide representative terms and their assignments to each document and therefore was defined as the research topics in
this paper. This removes the computational complexity of large-scale natural language processing over nearly two billion publications 
from the experiment, allowing larger scale experiments over wide range of domains. 

The extracted dataset has a total of 197,642,464 publications, 709,934 research topics, more than 1.5 billion citation links, and
1.3 billion paper-topic links. It is extremely taxing for clustering algorithms to operate on a network of such size; therefore the dataset
is divided into multiple datasets, each covering a specific research domain. Research topics in the second-highest level in the FoS
ontology hierarchy with similar popularities were first extracted as core topics, each representing individual research domains. Then 
a dataset is generated by extracting all publications that share a link to the core topic, and all topics linked to the document collection.
Topic co-occurrences frequencies are recorded yearly to produce an evolving topic network over given years. From 292 available
topics, a total of 103 domain topics with medium popularity were selected to generate 103 domain-specific datasets. The resulting
datasets had on average 48,467 topics and 3965,339 topic co-occurrences, with large standard deviations of 18,259.48 and 1217,796.
Table 8 shows the full list of datasets with a number of topics and their co-occurrences. 

DAC predicts the emergence of novel topics by measuring a likelihood of a current topic set being direct ancestors of a future topic.
The topic novelty is defined within the confinement of a single domain; topics from other domains are considered new when they are
introduced to the research domain for the first time. Topics in multiple bibliographical datasets are therefore clustered independently 
of their states and relationships in other datasets. A bibliographic dataset is used to generate a topic network where emergent topics
equate to nodes that are newly introduced in the network at a given timeslot. Validation of the experiment result requires a set of
outcomes predetermined to be correct, therefore a set of emergent topics is extracted from evolving topic networks to validate DAC’s
performances. Utilizing all known emergent topics is impractical and could be tainted by several low-quality topics; hence a series of
filtration is done to select topics with top quality. 

The bibliographic dataset with topic-publication relationships is used to generate a yearly set of emergent topics t ∈ T y for each
given year y . The emergent topic is defined as the topics with at least min _freq number of appearances before y ; min _freq = 0 would
result in the simple definition of emergent topics as any topic that was never used before. While being the simplest way to define
emergent topics, this is not always a safe approach to follow. The MAG allowed retrospective term assignments assigning topics to
a distant source paper, which went dormant for a long time before gathering community attention. Misused labels could occur as
well when the labels for a given topic are mentioned in unrelated publications under different semantics. In order to smooth the
outlier cases, min _freq = 5 is used instead to filter out possible outlier topic usages in the initial stages of its lifespan, such as irregular
uses, retrospective topic assignments, label misuses, or minor topics without sustained uses. Innovation of topics, which are separate
from the actual technical invention of said topic and often materialize at different times, are captured by filtering out initial outlier
occurrences ( Fleming, 2001 ). 

Ancestors of an emergent topic A y,t are defined as the set of topics with non-zero co-occurrences to t in y . For example,
A 2005 ,social_engagement in a human-computer interaction domain would include multimedia and user interface as a basis along with more 
directly related topics such as robot, virtual machine, psychology, artificial intelligence, and everyday life . This includes a large portion of
links with less importance; hence the ancestors are filtered by their contributions to the emergent topics. This is measured in terms
of co-occurrence intensity inspired by the intensity of collaboration ( Salatino et al., 2018 ), resulting in higher values for ancestors
with rare connections to the topic in question. To reduce the yearly variations from the equation, five years after y are searched to
analyze the initial topic trend instead of just looking at topics in y . Co-occurrence intensity between t and A y,t is calculated for each
ancestor member anc as below, using topic occurrence frequency and topic co-occurrence frequencies. 

𝐶 𝐼 𝑡,𝑎 = 

( ∑
𝑧 

(||𝑡 𝑧 || − |𝑎𝑛 𝑐 𝑧,𝑡 |)2 
) 1∕2 

, 𝑦 ≤ 𝑧 < 𝑦 + 5 (11) 

CI is the Euclidian distance between two vectors, each representing emergent topic frequency and co-occurrence frequency with 
the given ancestor topic. The smaller the distances, the more commonly two topics appeared in publications together over an initial
stage of the emergent topic. To maintain the regular quality of ancestor topics, A y,t is filtered with CI values to select the top 25 anc
with the smallest distances to t . The golden set is extracted for each of the 103 domain-specific datasets generated from the previous
section for y = [ 2001,…,2010 ]. The number of emergent topics steadily increased from 14,414 in 2001 to 24,854 in 2010, averaging
at 139.94 to 241.30 for 103 datasets. Most of the emergent topics had more than 25 neighbors and thus filtered out based on the
CI value, resulting in average neighbor sizes of 24.80 per emergent topic. After reducing duplicate selections, the number of topics
selected as neighbors of the golden set takes more than a quarter of available topics in the years; around 26% of the existing topics
were regarded as significantly contributing towards at least one emergent topic. Detailed information on the golden set for two sample
8 
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Table 2 

Parameters used in the experiment and their values. 

Parameter Value Description 

y [2001,…,2010] Experimented year 

𝜔 5 Evolutionary window 

d [0,1,2,3] Year distance parameter 

𝛼’ [0.90, 0.95] Structural similarity threshold percentile 

𝜀 3 Connected component expansion iteration counter 

m 15 Maximum number of edges per cluster 

𝜏 0.70 Cluster merging threshold 

𝜃 [0.01, 0.02, …, 0.75] Matching cluster similarity threshold 

𝜃’ [0, 1, 2, 3] Predicted similarity quartile 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

years y = [ 2005, 2010 ] is shown in Table 8 . The golden answer sets along with the list of graphs generated from the previous section
are uploaded as python object binary files to the Zenodo repository 2 for open access. 

Evaluating DAC’s performance 

Table 2 shows the list of variables used in the experiment. The experiments were focused on the 21st century, applying clustering
algorithms on ten datasets with y = [2001, …, 2010]. Years from 1997 to 2000 were used to accommodate a five-year evolution
window ( 𝜔 = 5 ), while years from 2011 to 2013 were used to evaluate the performance when predicting emergent topics for up to 3
years ( d = [0,1,2,3]). Edges with structural similarities 𝜎y ( u,v ) below 𝛼 are filtered out to retain the top 10% and 5% of most similar
topic pairs ( 𝛼’ = [0.90, 0.95]), which form a set of connected components which are then expanded by adding neighboring nodes
with enhanced PageRank values up to distances of three ( 𝜀 = 3). Clustering postprocessing is followed by selecting the top fifteen
edges with the highest pace of collaborations per cluster, then merging clusters with Jaccard similarity above 0.7 . 

LR models are trained to predict the performance of detected clusters through the metrics of how close the clusters are to becoming
ancestors of emergent topics in the present and future. The authors assume that the predicted similarity to an answer group is
positively correlated to the cluster having a positive match to one. This is tested by two levels of thresholds. First, the experiments
were conducted with incremental cluster similarity threshold 𝜃 until no positive matches were detected (2 dp ); the maximum threshold
value with positive matches was found to be 𝜃 = 0.75 . Then three sets of predicted similarity quartile 𝜃’ were used to first filter out the
clusters with low predicted Jaccard similarities to ancestor groups. Instead of using a set number, 𝜃’ is dynamically assigned by using
1st, 2nd, and 3rd quartile values for any given cluster outcomes with the unfiltered outcomes denoted as 𝜃’ = 0. Both weighted 𝜎y 

’ ( e )
and unweighted 𝜎y ( e ) structural similarities were calculated, resulting in a total of up to 48,000 results gathered for each of the 103
datasets with 75 𝜃s and three predicted similarity quartiles. 

DAC’s performance is compared with other existing methods, including ACPM , Clauset-Newman-Moore greedy modularity max- 
imization ( Greedy ) ( Clauset et al., 2004 ), and LED using the structural similarities as edge weights. All algorithms shared the same
network generation and postprocessing steps mentioned in sections 3.1 and 3.3 to share identical topic networks with a single weight
parameter and regulate the cluster numbers and sizes. The authors used a high-performance computing service by Alabama Super- 
computer Authority 3 to process the algorithms. The Networkx library’s greedy modularity communities function is used to run the 
Greedy algorithm, 4 while ACPM and LED were implemented following respective publications ( Ma et al., 2016 ; Salatino et al., 2018 ).
Some modifications were made to the LED algorithm due to the lack of explanation. For example, expansion with isolated nodes is
not implemented as the structural similarity used for attaching nodes to clusters is edge-specific values; the similarities are iteratively
re-calculated for each cluster during each loop, having no static global values to be compared with. It is inconclusive which values are
to be used when outside nodes are concerned and which edges should be restored. They are not likely to cause a significant difference
in this experiment setting where only core structures of clusters are used, and hence were deemed unnecessary; the modified LED
algorithm is defined as LED-m in the result section. 

Results 

Medium popularity topics are selected to reduce the effect of computational complexities caused by network sizes; FoS with the
highest level in the MAG’s FoS ontology were not used during experiments as their size caused some of the existing algorithms to slow
down considerably. Table 3 shows the resources required to run clustering algorithms on a dataset extracted for the Computer Science
domain with y = [ 2005, 2010 ], which processed 180,967 topics and 129,915,515 topic co-occurrences in total. A modified version of
LED ( LED-m ) is showing very little resource usage because isolated nodes were not considered, which is computationally expensive
with large graphs. On the other hand, ACPM used far more memory resources and took more time, returning an out-of-memory error
2 https://zenodo.org/record/5746108 
3 https://hpcdocs.asc.edu/ 
4 https://networkx.org/ 
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Table 3 

Computational time and memory usage for five clustering algorithms on a 

Computer Science dataset. 

Algorithm Year Time (H:M:S) Memory (Gb) 

LED-m 2005 0:06:12 1.31 

LED-m 2010 0:08:07 2.09 

DAC, d = 0 2005 0:20:07 1.81 

DAC, d = 0 2010 0:33:41 2.84 

DAC, d > 0 2005 2:52:32 1.81 

DAC, d > 0 2010 4:31:40 2.84 

Greedy 2005 6:29:14 0.97 

Greedy 2010 10:35:02 1.45 

ACPM 2005 22:30:27 491.72 

ACPM 2010 –∗ –∗ 

a. ∗ The run was crashed with a memory out error exceeding 500Gb. 

Table 4 

Linear regression performance metrics predicting how similar clusters are to the actual ancestors 

averaged over ten years on all 103 domain-specific datasets. 

𝛼’ d R 2 MAE MSE 𝛼’ d R 2 MAE MSE 

𝜎y ( e ) 90 0 0.6631 0.0314 0.0017 𝜎y 
’ (e) 90 0 0.6879 0.0311 0.0017 

1 0.5711 0.0355 0.0022 1 0.5885 0.0355 0.0021 

2 0.5844 0.0346 0.0020 2 0.6046 0.0345 0.0020 

3 0.5907 0.0345 0.0020 3 0.6142 0.0343 0.0020 

95 0 0.5986 0.0338 0.0020 95 0 0.6084 0.0330 0.0019 

1 0.5115 0.0374 0.0024 1 0.5145 0.0366 0.0023 

2 0.5211 0.0367 0.0023 2 0.5289 0.0358 0.0022 

3 0.5291 0.0365 0.0023 3 0.5351 0.0357 0.0022 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with maximum requestable memory of 500Gb from the Alabama supercomputing center. The proposed method is faster and memory
efficient compared to the Greedy algorithm as well. 

LR models are trained for each of 103 datasets over ten years, having either unweighted or weighted edges filtered by two structural
similarity threshold percentiles. Five independent variables are used as independent variables, while a maximum Jaccard similarity 
to a set of ancestors is used as a dependent variable. The models’ performances are first measured by their regression accuracies
predicting cluster quality (with the value range of 0 to 1) in the given year and following future years. Table 4 shows the trained LR
models’ performances in coefficient of determination (R 

2 ), Mean Absolute Error (MAE), and Mean Squared Error (MSE). Negative R 

2 

values can be generated for computational purposes; negative R 

2 values indicate that none of the data can be explained by the given
model, therefore are considered zero in the table. The predicted values are compared against the answer sets up to three consecutive
future years from 2001 to 2010. The results show that the regression model in DAC is capable of predicting cluster qualities with
less than 3.5% differences over all combinations tested during the experiment, showing on average 0.0348 differences in MAE. R 

2 

averaged at 0.5782; around 58% of the future cluster qualities can be explained by the regression models. 
While it can be regarded as adequate explainability, R 

2 values are noticeably lower than the results of a previous topic emergence
prediction research with R 

2 > 0.9 ( Jung et al., 2020 ). This can be attributed to the differences between detection and prediction ;
The DAC clusters are detected without having access to the timeslot where the actual ancestors are located as opposed to the pre-
vious research. Extracting the exact member of the subgraphs before they form is a challenging task, therefore the DAC algorithm
instead aims to detect the influential core members of the ancestor groups. Such an approach is to overcome the innate limitation of
prospective prediction at the expense of lower ancestor membership explainability; some ancestor members are left unexplainable by 
the DAC clusters on purpose to better capture the core members. The matching cluster similarity threshold 𝜃 is not used during the
regression training to boost the results as well. Lower R 

2 values in higher structural similarity thresholds support this explanation as
higher 𝛼’ results in more tightly connected clusters. On average 6.23% and 7.71% lower explainabilities were observed for 𝜎y ( e ) and
𝜎y 

’ ( e ) as there are fewer cluster members to be matched. Another likely explanation is that the variance in 103 datasets with different
research foci and publication behaviors caused randomness in the outcome as opposed to the previous research using datasets that
had fewer variabilities. Another possibility is that there are different stages of evolution in research domains, where the proposed
method is no longer applicable due to the drastic changes in topic co-occurrence patterns. A mineralogy domain is an example showing
extremely negative R 

2 values averaging at − 37.80 when y = 2010 and d = 3, a sharp decrease in the values in all other y and smaller d
combinations with an average R 

2 = 0.5725. Such low values with a specific year and year distance indicate there was an evolutionary
fissure between 2010 and 2013 in the field of mineralogy , and structures of an emergent topic’s ancestors in 2010, while showing
high explainability to ancestors in 2011 and 2012, are no longer viable in predicting an emergent topic’s ancestors in 2013. Sudden
drops in R 

2 were observed with specific combinations of y and d in several other domains including civil engineering . These findings
support the idea that research domains sometimes experience a year of rapid evolutions, which cannot be effectively captured using
continuous extrapolative approaches. 
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Table 5 

Average structural similarity threshold 𝛼, based on two 

structural similarity threshold percentiles 𝛼’ over all 

datasets, for both unweighted and weighted edges. 

𝜎y (e) 𝜎y 
’ (e) 

𝛼’ = 0.90 𝛼’ = 0.95 𝛼’ = 0.90 𝛼’ = 0.95 

2001 0.3028 0.3834 0.0077 0.0193 

2002 0.3015 0.3813 0.0075 0.0187 

2003 0.2973 0.3756 0.0072 0.0179 

2004 0.2917 0.3668 0.0066 0.0165 

2005 0.2890 0.3635 0.0063 0.0158 

2006 0.2863 0.3587 0.0061 0.0152 

2007 0.2836 0.3552 0.0056 0.0141 

2008 0.2806 0.3517 0.0052 0.0132 

2009 0.2778 0.3466 0.0050 0.0127 

2010 0.2733 0.3392 0.0045 0.0113 

mean 0.2884 0.3622 0.0062 0.0155 

var 1.00E-04 2.18E-04 1.18E-06 7.19E-06 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 shows structural similarity threshold values calculated with two different percentiles over the years, averaged over 103
datasets used in the experiment. There are clear disparities between threshold values for 𝜎y ( e ) and 𝜎y 

’ ( e ) with more than 30 times
the differences in their respective average values of 0.3253 and 0.0108. Such differences are caused by multiplying weighted vector
similarity and normalized weight to the unweighted structured similarity in Eq. (6) , granulating initial common neighbor size values
even further. Differences within 𝜎y ( e ) and 𝜎y 

’ ( e ) are also statistically significant for different threshold percentile 𝛼’ , giving a higher
average to a higher percentile with p = 3.17E-12, 1.86E-8 with two-tailed t-tests. 

Differences in 𝛼 show that the algorithm is filtering insignificant edges as proposed, while a larger variance in 𝛼 for higher 𝛼’
justifies the use of percentile thresholds instead of a fixed value over different topic networks exhibiting different levels of structural
similarities. This is less pronounced in Table 5 as variance differences for 𝜎y ( e ) are insignificantly different with p = 0.13 using a
two-sample F-test, which is reduced to 1.07E-07 when the thresholds are divided by 103 datasets instead of years. A steady decrease
in 𝛼 over years with a correlation coefficient over 0.99 indicates that topic networks in general experience slow but steady evolution.
Significant topics are becoming more dynamic with their roles in multiple communities with the introduction of novel topics to the
research domains in question. 

There can be many-to-many relationships between found clusters and golden answer sets, therefore modified definitions of pre- 
cision and recall ( Salatino et al., 2018 ) were used. Precision is defined as the fraction of clusters that resulted in positive matchings,
while recall is defined as the fraction of golden sets that resulted in positive matchings. 

Precision = |clusters(matched)| / clusters, 

𝑅𝑒𝑐 𝑎𝑙𝑙 = |𝑎𝑛𝑐 𝑒𝑠𝑡𝑜𝑟𝑠 ( 𝑚𝑎𝑡𝑐 ℎ𝑒𝑑 ) |∕ 𝑎𝑛𝑐 𝑒𝑠𝑡𝑜𝑟𝑠 (12) 

There is clear evidence that DAC outperforms existing clustering algorithms in terms of topic emergence prediction in both
precision and recall while showing comparably fewer differences within DAC variants. Fig. 2 shows the average performance metrics 
for three existing algorithms along with an average of four DAC instances using two 𝛼’ with 𝜎y ( e ) and 𝜎y 

’ ( e ) when 𝜃’ = 0; the error bars
mark standard deviations for each clustering algorithm. All graphs show the highest performance observed when the cluster similarity
is most relaxed with 𝜃= 0.01 as only 1% of common members warrant a positive match. Performance measures diminish with higher
𝜃s as stricter cluster matching is performed leading to fewer, but more similar, matches. The Greedy algorithm showed the worst
result as a modularity-based clustering algorithm with no specific arrangement for topic evolution; it recorded F1 < 10% even when
less than 5% of common members were required for a positive match. Its poor performance led to higher std when 𝜃 reaches 0.3 even
though precision and recall showed little deviations from their mean values; the differences between higher precision and lower recall
become too small with low performances, and random fluctuations dwarfed the performance metrics. The LED-m algorithm showed 
a slight improvement compared to the Greedy algorithm with minimal cluster threshold values but showed a jagged performance 
descent with large standard deviations. Precision was considerably lower for LED-m compared to its recall values, indicating that a
small fraction of highly impactful clusters were matched to many ancestor groups. The ACPM algorithm retained much higher F1
values showing more than double the F1 values compared to the LED-m , with relatively steady precision and recall values. This is
not far from the performance measured in Salatino et al. (2018) , where the task-specific ACPM outperformed existing overlapping
clustering algorithms with higher precision and lower recall. These results reflect the focus of clustering algorithms, where Greedy and
LED-m algorithms are focused on cluster detections while ACPM is specifically designed to be used in the topic evolution domain. DAC
is a dedicated clustering algorithm for network-based topic emergence prediction and shows the best curves. While four variations
exhibited minimal differences compared to other existing algorithms, all of them showed F1 over 0.75 when clusters were needed
to correctly capture at least 15% of ancestor group members. All variations showed statistically significant improvements over other 
algorithms, having 67% of the precision and recall points above the ACPM ’s positive standard deviation range over 0.08 ≤ 𝜃 ≤ 0.22.

Among the four DAC variations, 𝜎y ( e ) with 𝛼’ = 0.95 showed the best result as shown in Table 6 . Further analyses were made
based on the selected parameters. The effect of year distance parameter d was statistically significant but not surprising; F1 steadily
11 
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Fig. 2. Comparison between the existing algorithms and the proposed DAC algorithm with averaged prediction result for y ∼ y + 3 over 103 datasets 

and 10 years. 𝜃 and (a) Precision, (b) Recall, and (c) F1 are respectively shown as the x and y axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

diminished as predictions are made further in the future. The F1 value started with 0.5129 when the topics were detected in a given
year ( d = 0), which then showed diminishing values of 0.4909, 0.4810, and 0.4685 with d = 1, 2, and 3. Performance differences over
d are universal in all datasets. A number of case studies showed that while the overall performance diminishes greatly with higher 𝜃,
positively matched clusters show better semantic explanations. Lawlessness is an emergent topic in the domain development economics 
in the year 2008, previously having been internally used at least 5 times. 25 Ancestor topics with the highest co-occurrence intensity
in (11) were then compared against DAC clusters built by using data up to the year 2005, successfully performing a 3-year prediction
with one cluster showing a Jaccard similarity of 0.5172. Comparing topics within two groups shows that the ancestors and cluster
shared an idea of lawlessness being an outcome of geopolitical economics ( geography, politics, economics ) in deteriorating conditions
( terrorism, corruption, poverty ). Cluster members predicted topics such as organized crime and public sector would be relevant to a future
emergent topic, while the actual ancestors instead had more demographic-specific topics such as Islam, Somali, and colonialism . Using
the same experimental conditions, a topic musical acoustics within the human-computer interaction domain also showed interesting 
differences between the actual ancestors and the predicted cluster with 𝜃= 0.4138 . Agreement on the topic’s technical source is shown
by topics shared by two groups ( artificial intelligence, multimedia, speech recognition, user interface ), while the prediction was made
that the emergent topic would be more application-focused ( musical composition, pop music automaton, the internet in a cluster). The
ancestors were more technology-aware instead, having topics such as auditory display, haptic technology, scalability, sonifications, and 
visual servoing . Table 9 shows the full list of ancestors and clusters for the above cases. 

Performance changes over time y with cluster similarity threshold values 𝜃 were analyzed as shown in Fig. 3 to reduce the number
of outcome dimensions. Performance changes with 𝜃 are similar among variations showing drastically different outcomes per 𝜃. F1 
values over ten years with 𝜃 = [0.1, 0.2, 0.3] showed statistically significant difference over y with p = 1.99E-7 only when 𝜃 = 0.1 and
the differences became statistically obsolete with higher 𝜃 reaching p = 0.026, 0.837. 40.57% of the result had no positive matched
clusters with 𝜃 = 0.4 and therefore thresholds at or greater values were not considered in further analysis. This result shows that the
12 
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Table 6 

Average F1 for four DAC variants ( 𝜎y ( e ) and 

𝜎y 
’ ( e ) with 𝛼’ = 90, 95) over all y and d , when 

𝜃’ = 0. 

𝜎y (e) 𝜎y 
’ (e) 

𝜃 𝛼’ = 90 𝛼’ = 95 𝛼’ = 90 𝛼’ = 95 

0.01 0.9895 0.9913 0.9854 0.9906 

0.05 0.9834 0.9862 0.9773 0.9847 

0.10 0.9426 0.9443 0.9402 0.9372 

0.15 0.7927 0.7973 0.7901 0.7686 

0.20 0.5044 0.5164 0.4930 0.4705 

0.25 0.2345 0.2495 0.2264 0.2122 

0.30 0.0876 0.0965 0.0850 0.0778 

0.35 0.0314 0.0339 0.0318 0.0264 

0.40 0.0111 0.0112 0.0114 0.0093 

0.45 0.0055 0.0052 0.0052 0.0047 

0.50 0.0035 0.0031 0.0028 0.0026 

Fig. 3. Average F1 for DAC variants with standard deviation bars over ten years with three sets of 𝜃 ( 𝜎y ( e ), 𝛼’ = 0.95). 

Fig. 4. Five outlier domain-specific datasets showing significant F1 changes over the years. 

 

 

 

 

effect of a specific year is mostly not relevant to the performance over most of the datasets therefore results over y are averaged for
further analysis. 

While most datasets showed rather consistent performances, there are five outliers out of 103 domain-specific datasets showing 
significant time-sensitive performance changes. Fig. 4 shows F1 changes over years with 𝜃 = 0.2 for those outliers, where three of
them exhibit a valley-shaped evolution. Information retrieval, World Wide Web , and environmental ethics showed a rapid drop in their
F1 values in 1 ∼2 years, only to return to their former levels at similar speeds. This indicates that these three datasets experienced
13 
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Table 7 

Average Precision, Recall, and F1 for DAC( 𝜎y ( e ), 𝛼’ = 95, 𝜃= 0.2) over 103 

datasets over ten years. 

d 𝜃’ Precision Recall F1 

0 0 0.4905 0.4822 0.4705 

1st 0.6186 0.4764 0.5228 

2nd 0.7202 0.4545 0.5434 

3rd 0.8008 0.3953 0.5152 

1 0 0.4767 0.4587 0.4517 

1st 0.5986 0.4534 0.5006 

2nd 0.6973 0.4328 0.5202 

3rd 0.7727 0.3757 0.4915 

2 0 0.4679 0.4470 0.4418 

1st 0.5901 0.4426 0.4908 

2nd 0.6898 0.4233 0.5110 

3rd 0.7651 0.3659 0.4807 

3 0 0.4587 0.4338 0.4312 

1st 0.5787 0.4291 0.4783 

2nd 0.6791 0.4098 0.4977 

3rd 0.7550 0.3535 0.4672 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a discrete change in their topic evolution in different years, which could not be captured with continuous topic evolution tracking
approaches. Bioinformatics and visual arts showed lowering F1, and the authors assume that the two datasets also had fissures in their
topic evolution trend in or around 2010 and that DAC’s performances will re-grow after the newer continuous trends are captured. 

Comparison between the unfiltered outcomes and outcomes filtered by predicted similarity values indicates that removing less- 
performing clusters benefits overall performances. Clusters with maximum Jaccard similarity to ancestors in the lowest quartile are 
removed when 𝜃’ = 1st, which resulted in the F1 increasing by 0.0493 on average as shown in Table 7 . The precision constantly
increased with larger threshold quartiles up to average precision of 0.7734 as clusters with lower predicted similarities are removed
from the process. A lower number of higher quality clusters resulted in fewer false positives; higher 𝜃’ is also expected to cause a
higher ratio of false negatives, resulting in lower recall values. Using only the top quartile with 𝜃’ = 3rd resulted in slight performance
drops in terms of F1, as a steady decline in the recall values begins to outweigh the increased precision when only a quarter of the
detected clusters were compared against ancestors. 

Conclusion 

Topic evolution captures changes in topic semantics as well as their relationships over time by analyzing various data sources, from
unstructured documents to metadata in bibliographical datasets. Traditional topic models measure topical similarity with contents; 
therefore predicting emergent topics with no known content is not well studied. Existing research primarily focused on detection
instead, capturing the emergence of new topics as they appear in the timelined dataset. The descendant-aware clustering algorithm
is proposed to tackle the problem of topic emergence prediction before topics materialize. This is done by converting the problem
into predicting topic groups that will have an emergent topic as their common descendant , employing a network-based approach. In this
problem, an emergent topic is predicted when a cluster positively matches one of the emergent topics’ ancestor groups in the future.

The DAC algorithm is proposed to focus on identifying possible common ancestors of new descendant topics within a given
topic network. Topical qualities such as popularity, importance, and maturity are taken into consideration with various parameters 
such as topic co-occurrence frequencies and pace of collaborations. A series of filtrations and expansions are done based on structural
similarities, then regularized by edge filtration and merging heavily overlapping clusters. The algorithm process is designed to operate
on large dense networks, extracting non-exhaustive and overlapping topic clusters which are regarded as candidate ancestor groups 
for topics that will emerge in the future. 

Linear regression analyses on 103 domain-specific datasets were first done to measure the prediction capabilities, comparing 
observed cluster similarities versus the predicted similarity values based on the results in previous years. Results showed that up to
59% of the cluster similarities can be explained by linear regression models, showing the average mean squared error of 0.002 for
103 datasets. The generalizability of the DAC algorithm is shown over different research domains each with a different research focus
and interests. It is also worth noting that the DAC is not a specialized algorithm for a specific dataset such as the MAG’s FoS used in
the experiment. Co-occurrence networks as input data are loosely defined and other forms of topics such as word embeddings can be
used to build the input network. DAC algorithm can also be applied to non-topical networks in order to perform a node prediction as
opposed to topic emergence prediction. 

Multiple variations of DAC showed superior performance compared to three existing algorithms which undergo the same cluster 
regularization process as DAC. Three algorithms represented exhaustive clustering, overlapping clustering, and clustering focused on 
topic emergence prediction showing incremental performances as their goal is closer to topic evolution. DAC’s clusters resulted in
positive matches with larger cluster similarity threshold values and showed a higher ratio of positive matches at each threshold while
exhibiting slow performance descent with increasing thresholds. While producing the best outcome, DAC was also shown to be fast
and memory-efficient compared to existing algorithms, capable of working on networks with more than 100 million edges. 
14 
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Positive matches were detected made up to three years in the future, predicting the likelihood of a cluster having an emergent
topic as its descendant. Predictions made for three years in the future still showed an average F1 of 0.4685, indicating that structural
patterns related to emergent topics are steady enough in most research domains to perform multi-year predictions. When their topic
evolution trend abruptly altered, DAC was able to capture the new patterns after one to three years; DAC’s performance rebounded
after experiencing temporary drops in prediction performances. 

Modifying the DAC algorithm will be done in future work. Different regression methods with more training features will be
evaluated to enhance the cluster qualities , building an accurate model to rank the DAC clusters in the likely order of being the ancestors
for emergent topics. Clusters with varying common structures will be extracted with dynamic similarity modifications in the edge 
filtering process to capture sudden changes in topic evolution patterns. The connected component expansion process will consider the 
edge frequency as well, allowing clusters to utilize more topic co-occurrence frequency information. Improved performances with 
predicted similarity quartile parameters will be incorporated into the clustering algorithm as well, with structural similarity rank and
cluster size limitation parameters. Modularized evaluations would be done along with the algorithm improvements, analyzing the 
effects of each step and removing irrelevant steps to further reduce the time and resources required . 
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Appendix 
Table 8 

List of datasets with their core topics and the number of membership topics and topic co-occurrence frequencies, followed by the 

number of emergent topics and the average size of their neighbors in the years 2005 and 2010. 

2005 2010 

Core Topic # of Topics # of Co-occurrences Count Avg. size Count Avg. size 

actuarial science 35,167 2397,765 212 24.90 239 24.78 

advertising 54,572 4423,987 304 24.73 472 24.79 

aesthetics 30,517 2271,009 137 25.00 214 24.92 

agroforestry 43,226 2998,769 139 24.71 167 24.93 

algebra 31,280 2817,917 141 24.99 157 24.96 

ancient history 38,793 3633,754 111 24.33 221 24.28 

animal science 58,735 2778,387 145 25.00 193 24.78 

anthropology 35,457 3003,186 121 24.74 167 24.22 

applied mathematics 41,099 2588,396 146 24.72 164 24.98 

archaeology 62,556 3790,023 126 24.61 236 23.89 

astronomy 41,224 5076,883 73 24.53 115 24.72 

astrophysics 31,260 5212,637 77 24.84 91 24.67 

atmospheric sciences 30,646 2695,013 78 25.00 102 24.96 

bioinformatics 92,142 3767,221 381 24.99 496 24.98 

biomedical engineering 72,127 3472,455 268 24.72 390 24.86 

biophysics 53,056 2632,646 127 24.99 129 24.84 

cartography 95,012 5482,134 288 24.41 497 24.26 

civil engineering 40,542 2382,278 213 24.93 263 24.62 

classical mechanics 52,404 6625,401 185 24.90 177 24.98 

classics 31,963 3414,987 73 24.47 159 24.06 

climatology 35,705 2930,897 117 24.99 158 24.77 

clinical psychology 52,174 6484,065 202 24.91 255 25.00 

cognitive psychology 45,507 3434,011 182 25.00 430 24.52 

combinatorics 47,835 4783,880 193 24.99 218 24.72 

computational chemistry 35,357 3008,257 82 25.00 54 25.00 

computer graphics images 46,601 3763,998 238 24.73 190 24.45 

crystallography 59,842 6413,452 208 24.44 181 24.73 

demography 57,107 3239,925 149 25.00 215 24.84 

development economics 33,024 3722,942 181 24.99 266 24.90 

discrete mathematics 55,017 6078,114 269 24.92 211 24.90 

distributed computing 57,437 5675,803 510 25.00 318 24.83 

econometrics 50,243 4104,364 223 24.88 277 24.98 

economic growth 37,273 5365,714 267 24.91 411 24.95 

economy 42,093 4151,910 283 24.96 305 24.98 

engineering drawing 62,324 5648,804 261 24.72 274 24.52 

( continued on next page ) 

15 



S. Jung and A. Segev Journal of Informetrics 16 (2022) 101320 

Table 8 ( continued ) 

2005 2010 

Core Topic # of Topics # of Co-occurrences Count Avg. size Count Avg. size 

engineering ethics 34,499 2385,121 144 25.00 243 24.70 

engineering management 37,691 2995,708 219 24.53 279 24.70 

environmental chemistry 57,123 4468,251 135 24.87 202 25.00 

environmental engineering 61,037 5374,966 220 25.00 421 24.93 

environmental ethics 39,355 2353,948 108 24.79 209 24.50 

environmental health 55,325 3851,309 190 25.00 257 24.99 

environmental planning 30,892 2855,897 182 24.83 266 24.78 

environmental protection 48,124 2256,015 162 25.00 230 24.85 

epistemology 44,110 4851,536 242 24.94 304 24.89 

ethnology 43,498 3170,213 75 24.08 129 23.97 

fishery 71,576 3406,750 163 24.92 216 24.95 

forensic engineering 51,718 2445,868 168 24.95 181 24.72 

forestry 68,974 2661,963 126 24.46 236 24.44 

gender studies 33,694 4782,842 224 24.76 254 24.79 

geochemistry 26,396 3320,336 68 24.43 81 25.00 

geometry 60,296 4477,009 153 24.56 200 24.79 

geomorphology 42,353 3458,390 81 24.70 157 24.36 

geotechnical engineering 45,438 5840,508 241 24.99 248 25.00 

gerontology 51,878 3944,056 174 24.97 257 24.98 

human computer interaction 46,325 2900,975 238 25.00 244 24.83 

hydrology 48,765 4956,760 182 25.00 212 24.92 

information retrieval 48,977 3049,638 238 24.84 216 24.59 

library science 59,260 5675,004 172 24.51 468 23.06 

linguistics 40,193 5463,720 184 24.87 255 24.75 

management 48,477 3513,747 184 24.90 362 24.72 

marine engineering 36,650 3895,780 115 24.88 274 24.92 

marketing 51,027 6416,905 365 24.97 557 24.96 

media studies 39,288 4457,398 207 24.89 298 24.65 

medical education 40,947 4963,492 162 24.75 292 24.87 

medicinal chemistry 35,003 3013,725 57 24.12 43 24.16 

meteorology 45,651 3541,140 142 24.86 204 24.65 

microeconomics 33,566 2458,070 178 25.00 147 24.93 

mineralogy 58,769 4575,444 144 24.52 184 24.86 

neuroscience 68,721 5933,957 184 24.87 301 24.92 

nuclear chemistry 61,373 5633,411 189 24.61 256 24.70 

nuclear engineering 27,728 2310,540 60 25.00 99 24.73 

nuclear magnetic resonance 57,969 5440,971 133 25.00 115 25.00 

nuclear physics 22,080 3790,254 58 24.88 40 24.58 

oceanography 46,845 3270,096 105 24.50 122 24.07 

operations management 63,496 4105,735 346 25.00 467 24.96 

operations research 65,399 3076,770 267 25.00 341 24.74 

paleontology 63,417 2710,317 95 25.00 107 25.00 

particle physics 17,917 3467,573 52 24.90 44 24.93 

petroleum engineering 38,434 4403,087 124 24.56 229 24.93 

political economy 31,155 4707,239 167 24.26 205 24.72 

psychoanalysis 32,207 2246,569 78 24.59 126 24.37 

psychotherapist 32,775 2516,913 87 24.98 122 24.78 

public administration 42,084 6337,588 243 24.58 374 24.53 

pulp and paper industry 39,493 3124,851 126 24.63 251 24.89 

pure mathematics 27,364 2928,460 89 24.94 139 24.94 

quantum electrodynamics 22,296 3440,328 80 25.00 38 25.00 

quantum mechanics 43,893 5610,778 190 25.00 130 25.00 

religious studies 22,446 3146,961 96 23.91 126 24.09 

remote sensing 47,035 3932,035 207 24.94 236 25.00 

simulation 89,549 6456,106 552 24.95 730 24.97 

speech recognition 47,573 3300,950 213 24.84 248 24.67 

statistics 77,319 4999,099 230 24.92 325 24.76 

systems engineering 45,938 2904,975 215 24.98 216 24.93 

theology 34,429 4450,785 103 23.11 193 23.66 

theoretical computer science 53,430 3561,597 305 25.00 258 25.00 

thermodynamics 45,324 5110,995 131 24.88 150 24.98 

topology 53,617 4406,534 232 25.00 275 24.99 

traditional medicine 85,056 4430,631 389 24.78 552 24.61 

transport engineering 37,133 2698,597 150 24.84 249 24.82 

veterinary medicine 70,733 2543,243 194 25.00 281 24.78 

visual arts 39,341 3605,958 155 24.57 307 24.13 

world wide web 62,275 5814,558 339 24.74 397 24.48 

zoology 150,091 3958,030 149 24.86 267 24.53 
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Table 9 

Examples of DAC clusters with positive matching to the actual ancestor groups exceeding 𝜃= 0.5 . Data 

in 2005 is used to predict emergent topics in 2008 ( y = 2005 and d = 3 ). 

(a) Topic Lawlessness in domain Development Economics. 

Ancestors Clusters 

Colonialism Corruption 

Corruption Democracy 

Democracy Development economics 

Development economics Economic growth 

Economics Economics 

Geography Geography 

Globalization Globalization 

Government Government 

Insurgency Law 

International community Organised crime 

Islam Political corruption 

Law Political economy 

Legitimacy Political science 

Political economy Politics 

Political science Poverty 

Politics Public sector 

Population Rule of law 

Poverty Sociology 

Rule of law Terrorism 

Scholarship 

Sociology 

Somali 

Spanish Civil War 

Terrorism 

Wage 

(b) Topic Musical acoustics in domain Human–computer interaction. 

Ancestors Clusters 

Artificial intelligence Artificial intelligence 

Auditory display Computer science 

Computer music Distributed computing 

Computer science Engineering 

Digital audio Gesture 

Distributed computing Human–computer interaction 

Gesture Input device 

Haptic technology Multimedia 

Human–computer interaction Musical 

Input device Musical composition 

Multimedia New Interfaces for Musical Expression 

Musical Pop music automation 

Musical instrument Software 

New Interfaces for Musical Expression Speech recognition 

Scalability The Internet 

Scientific method User interface 

Simulation 

Software 

Software development 

Sonification 

Speech recognition 

Telecommunications 

User interface 

Virtual reality 

Visual servoing 
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