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a b s t r a c t

The shared interest among existing research topics matures over time until it emerges as a topic of
its own. This paper detects emerging topics as well as general predictor models spanning multiple
research domains through the network-based topic evolution approach, which offers additional topic
evolution capabilities such as extrapolation of data and separation of topic transition and correlation.
Topics are represented as their neighbors in the past, or ancestors, and their structural properties are
used to train binary classification models in capturing the materialization of such topics. The entirety
of 197 million publications within the Microsoft Academic Graph was used to build multiple datasets,
where machine learning algorithms were trained with structural features resulting in over 0.98 area
under the precision–recall curve. General topic emergence predictor equations are then proposed based
on the models trained specifically for each domain, which were able to capture a common pattern
shared by emerging topics in general.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Research is a collective work, where scientists expand the
urrently available knowledge by contributing discoveries in the
orm of publications. The gradual expansion based on past knowl-
dge is a foundation of valid and sound research activities. Know-
ng the boundary of knowledge is therefore essential for any
esearcher to provide meaningful contributions; one needs to
now where the boundary is before expanding on it. Such infor-
ation has both academic and industrial value by providing in-
ight on setting the research goal; research efforts can be directed
owards the more valuable discoveries, or instead be invested
n the future technologies yet to be studied by the competi-
ors. A summarized overview of research topics would alleviate
he researchers’ workload, as it helps with internalizing current
nowledge in the research domain. Topic evolution automatically
etects and tracks research topics by employing text-based topic
odels over document collections.
The network-based topic emergence detection is illustrated

n Fig. 1, where neighbors of an emerging topic in year y are
racked in previous years through their neighbors or ancestors.
he authors have previously shown that ancestors of emerging
opics are structurally distinguishable from ancestors of already
xisting topics [1]. This paper aims to validate the assumption
hat emerging research topics over different domains share a

∗ Corresponding author.
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950-7051/© 2022 Elsevier B.V. All rights reserved.
common graphical pattern in their ancestors, and a single classi-
fier model can be built to identify and predict emerging topics,
in other words, topics added to the given network, regardless
of the searched domains. Such a model needs to be semantic-
independent to work on different domains, therefore a network-
based topic evolution approach is employed where topics are
defined by their neighbors in a topic network. This allows context
assignment to new topics in the future where related documents
are yet to be published, as the past relationships between their
ancestors can be utilized instead. Relationships between different
topics and semantic transitions within a single topic are also
separated, as the edge and node attributes respectively reflect
such changes. This allows the identification and prediction of
more evolutionary event types such as merge and split on the
evolving networks, which are hard to distinguish using text-based
topic models. The proposed approach is first applied to the list of
top-level research domains on a publicly available bibliographic
dataset, utilizing multiple machine learning techniques to capture
the possibly distinct patterns in different datasets. The trained
models are then utilized to propose a generalized topic emer-
gence prediction model which can universally be applied to any
research domain.

The shared interest among existing topics matures over time
until it materializes as a topic of its own; the maturation and
ultimate materialization of such topics are reflected on the topic
network as a new node with the contributing topics as its an-
cestors. The proposed method incorporates this behavior and
classifies topic subgraphs as whether a new topic will emerge
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Fig. 1. Linking an emerging topic (blue) in year y with their ancestors (red) in previous years.
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rom them, with relationships within the subgraph represent-
ng interactions leading up to the new topic. Various research
omains are experimented on to cover different interests and
copes, ranging from specific techniques or phenomena to re-
earch fields such as art, science, and engineering methods. The
op two levels in the hierarchical fields-of-study ontology from
he Microsoft Academic Graph dataset were used to represent a
otal of 311 research domains within 197.64 million publications,
ontaining 18.67 million overlaps from a set of 0.71 million topics.
The problem is formalized as classifying new nodes with the

raphical features of their ancestors. Multiple machine learning
lassifiers are trained to capture various domain-specific research
ehaviors; for example, the research activities in philosophies are

different from those of quantum physics. The experiment result
howed that binary classification is capable of identifying ances-
ors of emerging topics. Logistic regression models performed the
est in more than 1/3 of the datasets, indicating the data are
inear in many cases. The models trained for each domain are
hen analyzed to extract a domain-independent general pattern
s a form of a single regression model. The assumption is that
merging topics’ ancestors share a set of common structural
eatures throughout different domains. The authors generated a
an-domain topic emergence predictor regression model, show-
ng that the general predictor model can successfully predict
opic emergence in a majority of the domains using only four
ut of the total 15 features used during training. The exceptions
ere several medical and economics-related domains where the
ommon model failed, indicating that there are domains with
opic co-occurrence patterns distinct from the rest of the research
ommunities.
Section 2 reviews the related work on topic evolution, pre-

ious attempts at the prediction of new topics, as well as back-
round research for the proposed method. Sections 3 and 4 de-
ail the proposed method and experimentation, and the experi-
ent results are shown in Section 5. Finally, Section 6 lists the
oncluding remarks and future works.

. Related work

Topic evolution is the field of research focusing on the tempo-
al evolution of topics, where topics represent the shared theme
ithin the given set of text documents. Content transitions of a
ingle topic and topical correlations between different topics are
nalyzed over time [2] into one of the six event types including
urvive, dissolve, grow, shrink, split, and merge [3]. The traditional
pproaches mainly define topics as probabilistic models such
s Latent Dirichlet Allocation and its variants. Topics are first
ndependently extracted from temporally ordered subcollections
o form a series of timeslot-specific topic models [4]. The topic
odels on consecutive timeslots are then connected with simi-

arity measures, where differences between connected topics are
iewed as evolution within the connected topics. Dynamic topic
odels [5] used a fixed timeslot approach to capture the evo-

ution of chained topics. Evolutionary theme pattern mining [6]
xpanded on this approach by allowing multiple connections
etween sequentially ordered topics over time instead of looking
2

t only one-to-one connections. A chain of similar topics over
onsecutive timeslots is then interpreted as the existence of con-
ent transition between the similar topics [7]. Another recent
pproach involves the two-tier topic model method, where the
lobal topic models spanning across the whole timeslots are used
s temporal anchors between multiple local topics over time [8].
he static global topics are used as the topic evolution branches
n which multiple local topics can join using cosine similarities
ith a threshold. Evolutionary transition is found by changes in
izes and numbers of local topics connected to a single global
opic over the years. This however had a limitation of measur-
ng only evolutionary transitions within time-insensitive global
opics.

Topic models represent topics by a series of word vectors,
hich are used to represent the word identity and topical context
t the same time [9]. Evolution within a single topic and evolution
nvolving multiple topics are therefore indistinguishable as they
re all represented by the same high semantic similarities. The
mergence of topics is generally not considered in the tradi-
ional topic evolution because of the semantic-based similarity
easures as well, as topics are never truly semantically unique

n the distribution-based topic models. Manual interpretation is
equired to detect such evolution. There are numerous attempts
t topic evolution with the use of non-textual data to over-
ome such a limitation. The bibliographical relationships between
ublications and their authors have been proposed to enhance
opic evolution. The evolutionary transition was augmented with
ross-citation count within topic membership documents [10].
sing a citation context was proposed to deal with the small
umber of documents assigned to topics as well, expanding the
ocument collection with documents cited by its members [11].
he citation information was also used to overcome the topic di-
ution problem, utilizing cited document semantics to distinguish
utonomous parts with originalities from inherited contents [12].
his resulted in topic models with more emphasis on the research
ront of the publications. The research front consists of new terms
ith sharp frequency growth, or emerging topics.
Applications of topic evolution with different topic definitions

ave also been studied in recent years. New topic identifica-
ion [13] defined topics as the users’ interests. The query intervals
nd semantic patterns during the search engine querying session
re used to identify topics, where new topics are found with
istinct search patterns. Online recommender systems aim to
dentify and predict changes in user interests based on previous
urchases and browsing records. The recent approach in recom-
ender systems is the use of knowledge graphs [14], where graph
ompletion and embedding techniques are utilized to provide
ore accurate recommendations with better explainability. Tech-
ology forecasting [15] aims to predict future technology char-
cteristics. Communities in a temporal keyword co-occurrence
etwork replaced the distribution-based topic models [16], using
he pre-defined medical subject headings dataset from PubMed
s keywords. Keyword clusters are considered topics, and simi-
arities between temporally neighboring clusters were measured
o identify the evolutionary transitions.

These researches are focused on alleviating the fundamental
imitation of the text-based topic models, where the identity
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s

nd content of a topic are represented by the same feature.
he two-tiered topic model method was tested on 700 thousand
ublications over 20 years using LDA topic models as it is one of
he recent approaches focusing on merge and split events [17].
ext-based topic evolution was able to capture distinct major
opics in the dataset but performed poorly at detecting merge and
plit events between them. The majority of topics with focused
nterests fail to appear in any meaningful topic evolution paths
s the evolution tracks were dissolved into time-spanning global
opics; topics evolve over 20 years with enough changes that
tatic global topics cannot be semantically connected to each of
hem. Few semantically generic topics dominated the evolution
aths as they were most often used together as background
aterials; three out of ten global topics were responsible for
ore than 90% of the merge and split events. Network-based

opic evolution approach is proposed to separate the identity and
ontent of a topic, allowing access to more accurate topic merge
nd split detection. The author-based topic evolution method
as proposed where the multiple author relationships within the
ibliographic dataset are used to capture fluid evolution between
hanging topics [17]. Multigraph clustering is applied to five-
imensional author networks, and each author group is defined as
he representation of the topic they have a common interest in.
opic evolution identification based on the topic co-occurrence
etwork is proposed to retain the versatility of network-based
opic evolution while removing the uncertainty and external fac-
ors of the author relationships [18]. The emergence of new topics
as identified by defining the topic as its neighbors in the topic
etwork, where the previous relationships between the neighbors
ere classified with machine learning techniques. Merge and
plit events were also captured, showing continuous evolution
aths between topics over time as well as semantic transitions
ade within a given topic at the same time.

. Network-based topic emergence prediction

Statistical topic models rely on the word distributions in the
iven document collection. This approach is capable of identifying
lready present topics in the research field but is limited to
etrospective identification. Prospective evolutionary prediction,
uch as emerging topic detection, requires the knowledge of the
ovel topic models which need to be extracted from the yet non-
xistent future documents. This limitation is further exacerbated
y the fact that a topic’s identity is directly tied to its con-
ents, which are used to semantically connect topics over time.
ontinued evolution within a single topic and evolution involv-
ng multiple topics are both measured by semantic similarities,
endering them hard to be distinguished. The proposed method
tilizes network structures instead to overcome such limitations,
here an identity of a topic and relationships between topics are
eparated as nodes and edges in topic co-occurrence networks.
uch separation allows the method to simultaneously capture
ontent transition and topical correlation, detecting complex topic
volution events such as merge, split [17], and emergence. The
xtrapolative nature of evolving networks also grants the possi-
ility of prospective prediction for events in the future, without
ccessing relative data from the target timeslot. Topic emergence
s a complex topic evolution event that is often impossible to
redict using text-based methods on non-existent publications;
his paper aims to show that the proposed method can capture
uch events as well. Emerging topics are represented as new
odes, where the context of new topics can be derived from the
ontexts and previous behaviors of their neighboring nodes.

.1. Topic emergence identification

Research topics cannot be accurately represented without con-
idering the research domains they are observed in, as the topics’
3

statuses are dependent on when and where they are used. For
example, a fully matured research topic in one domain could be
transferred into another domain as an aspiring topic. The popu-
larity of a research topic can vary in different domains as they
have unique research backgrounds and interests. The emergence
of new topics is therefore measured within the scope of specific
research domains, each represented by a specific research topic
called domain topic. Topic network Gd,y is generated for each
domain topic d by extracting topics and topical co-occurrences
found from a d-related document collection in a given year y.
Each topic v present in the vertex set Vd,y = (v) has at least
one co-occurrence with d, and the edge set Ed,y represents the
topic co-occurrence frequencies between vertex v1 and v2 at y
with frequency wd,y as the weight.

Ancestors of an emerging topic are represented as a group
of topics with a previously unseen predecessor in the network.
Neighbors are first found for each topic in Gd,y+1 to generate a
set of nodes connected to the target future topic. They are then
projected to Gd,y to extract a set of nodes V ′

d,y(v) which will have a
single topic v as their common predecessor in the next year. Any
ancestors that are not present in the given year’s topic network
are disregarded. The ancestors V ′

d,y(v) are then categorized based
on whether the predecessor is new or old in y + 1. For a given
domain topic d, there is a fixed set of topics v ∈ Vd used over
the years. Each topic v has a specific year when it was first used
within the domain, and initd(v) is defined to represent the year
when v first co-occurred with d. The given topic v is new when
initd(v) = y + 1. Topics previously appearing in earlier topic
networks are defined as old when initd(v) < y + 1. The binary
state of a given topic v at year y in domain topic d is defined as
cd,y(v) which is calculated as the inverted ceiling function applied
on the normalized differences between initd(v) and y. The new
topics are denoted as cd,y(v) = 1, while old topics are denoted as
cd,y(v) = 0. V ′

d,y(v) is built for each node set in Vd,y+1, which can
reach over 100,000 depending on the size of the research domain.
Filtering is done to reduce the number of analyzed subgraphs.
As subgraph sizes follow the power law, the long tail as well
as the short head are filtered out as they are either too minor
to be meaningful or too broad for meaningful analysis. Firstly,
extreme size differences in the few largest V ′

d,y(v) were mediated
by filtering new and old topic groups larger than the maximum
size in the other group. Then the top n largest topic groups td,y(v)
were selected for each label to form a maximum of 2n topic
groups.

V ′

d,y,n = {maxn(new) ∪ maxn(old) | new, old ∈ V ′

d,y(v), v ∈ Vd,y+1,

|new| ≤ max(|V ′

d,y(v)|) where cd,y(v) = 0,
|old| ≤ max(|V ′

d,y(u)|) where cd,y(u) = 1}

(1)

Different research domains exhibit varying research patterns
over time a single ML algorithm might not be able to capture.
Several algorithms were therefore deployed for binary classifica-
tions within a given domain topic d with varying combinations
of the number of topic groups to classify (n), and the length of
training years (l). For a given year y, classifier models are trained
using topic groups for l previous years {Td,i,n | y − l ≤ i < y},
using top n rows for each label. A multi-layered ANN method
using stochastic gradient descent was used to train an adaptive
deep learning (DL) [19] model with a cross-entropy loss function
and rectifier activation function. A DL model generates in-model
features and hence the interpretation of the result is harder, but
it can deal with less optimized feature sets. Distributed Random
Forest (DRF) generates multiple random forest learners trained
on partial data and uses the average outcome for the final pre-
diction [20]. While it is generally considered a good predictor



S. Jung and A. Segev Knowledge-Based Systems 258 (2022) 110020

w
s
t
t
m
p
X
o
o
a
o
d
d

i
n
a
i
f

3

d
f
o
d
m
f
b
l
c
U
t

l
e
c
m
d
m
i
g

4

4

p
t
l
s
a
c
r
c
c
l
r
i
M
a

l
p

p
d
h
w
f

4

p
c
d
t
d
n
w
t
w
c
t
s

here the data imbalance between labels is inevitable, DRF also
uffers from low interpretability due to the complex nature of
he process. A gradient boosting machine (GBM) uses parallel
ree boosting and iteratively builds models for each branch. The
odels are sequentially trained based on the outcome of their
redecessors to minimize the cross-entropy loss function. The
GBoost framework [21] (XGB) is a more regularized version
f GBM for computational resource efficiency and lessening the
ver-fitting problem, which has many hyperparameters to control
nd hence is harder to tune albeit with better performances and
utlier control. Lastly, logistic regression (LR) provides a high
egree of result interpretability without hyperparameter tuning
espite its linear capability.
Structural features of the topic groups are measured to be used

n the binary topic emergence classification. 15 subgraph-related,
ode-related, edge-related, and weighted features are selected
s dependent variables. They represent different dimensions of
nformation stored within networks, which are later pruned with
eature engineering techniques.

.2. Identifying general patterns of emerging topics

The classification models are trained for top n topics for each
omain topic d at year y, generating models specifically trained
or the given topic groups Td,y,n. Any model trained by one set
f topic groups Td,y,n can be applied to other topic groups with
ifferent domain topics, years, or group sizes Td′,y′,n′ as all of the
odels share the same data structure with the identical set of

eatures; no modifications to the model are necessary. Successful
inary classifications for Td′,y′,n′ would indicate that the binary
abels in Td,y,n and Td′,y′,n′ share a common pattern, which was
aptured when the model was trained with one set of data.
tilizing the trained model with other testing data would provide
he generalizability of the method over different datasets.

The averaged linear predictor equation is then proposed. A
ogistic regression model can be described as a single formula
x⊤β+β0/1 + ex

⊤β+β0 with the input feature data x, the feature
oefficient set β , and the intercept β0. Averaging β and β0 over
ultiple models provides a general model that is common across
ifferent topic groups. The general model will represent the com-
on emerging topic pattern between different domain topics

nstead of showing the global background pattern that is seen in
eneral research.

. Experiments

.1. Dataset

Microsoft Academic Graph (MAG) [22] is selected from many
ublicly available bibliographic datasets from which to extract
opic networks. The MAG is one of the more recently created bib-
iographic datasets but is competitive with other major datasets
uch as Google Scholar and Scopus datasets in size and cover-
ge [23]. The MAG also provides a hierarchical concept ontology
alled Fields-of-Study (FoS) [24]. The six-level concept ontology
enews monthly by applying a series of graph link analyses and
onvolutional neural networks to Wikipedia articles. The con-
epts are then tagged to the publication weekly with the help of
arge-scale multilevel text classification. This is important in this
esearch as assigning topics from dataset-wide topic vocabularies
s a large task in itself. The FoS are already extracted within the
AG dataset for the indexed publications and therefore are used
s topics assigned to the publications in the experiment.
The February 2020 snapshot of the MAG dataset is down-

oaded through Microsoft Azure Databricks, including 197,642,464

ublications, 709,934 FoS, 48,829 journals, more than 1.5 billion

4

Table 1
Summary of the 311 datasets for each domain topic.

#FoS #Papers #PaperFoSlinks

min 1,264 553 4,770
mean 60,024 1,351,113 9,405,866
max 484,664 24,546,680 169,418,047
std 50,420 2,755,881 19,397,927

citation links, and over 1.3 billion paper-FoS links. The prepro-
cessing is done to extract partial datasets, as the topic network
over the whole domain would be too complex to retrieve and
process. Bibliographic records related to a specific FoS are ex-
tracted to represent a subset collection, sharing the same topic.
The purpose of this paper is to show that there is a common topic
emergence pattern spanning various research domains, there-
fore all FoS with the top two highest levels in the hierarchical
concept ontology are used. The outcome is a total of 311 sub-
datasets covering all 197 billion publications, each focused on
one of the 19 level 0 FoS or 292 level 1 FoS. Some level 1 FoS
such as arthistory and organicchemistry represent subsets of the
relative level 0 FoS (art and chemistry) where an almost complete
hierarchy can be observed. There are also level 1 FoS with less
hierarchical roots such as botany or law, representing the smaller
yet fairly independent research fields.

Table 1 shows the average size of FoS-specific datasets. A total
of 18.67 million FoS are used with all 311 topic networks, each
network on average having 8.45% of the total FoS. The topic net-
works generally represent interdisciplinary research fields con-
nected to a wide range of topics, sharing many common topics
between them. Commonalities between topic networks are also
reflected in the overlaps ratio, as topics on average appeared
over 26.3 domains while only 2.13 overlaps were observed per
publication. There are also large variances in the number of topics
and publications related to them, with the largest FoS dataset d
= medicine alone consisting of 324,171 topics from 24.55 million
apers, and nearly 169 million links between them. This is a stark
ifference from the smallest FoS dataset d = ceramic materials
aving only 4770 links. This allows the experiment to be run on a
ide range of datasets, which have different sizes and structural

eatures.

.2. Topic emergence identification

The dataset preprocessing is done using the Alabama Su-
ercomputer Authority1 high performance computing service,
onverting the totality of the MAG dataset into 311 separate
atasets. Topic groups Td,y,n using the Ancestor topics in (1) are
hen extracted from the network. Various domain topics have
ifferent histories, and therefore the datasets at the same y do
ot represent the domains with the same research maturities. It
as still deemed more appropriate to compare topic groups in
he same year as the overall changes in the research behaviors
ith the technological development and expansion of research
ommunities outweigh the length of history in the field. Ances-
ors of each topic v in the next year y + 1 are extracted, and the
ize-ranked subgraphs in y are filtered by n for the new and old
topics.

The experiment involves running multiple classifications using
thousands of training set combinations. It is impractical to opti-
mize or engineer all possible ML models; therefore an automated
ML framework is used for the classification tasks. H2O AutoML2
is one of the leading open-source Automated Machine Learning

1 https://hpcdocs.asc.edu/.
2 https://h2o.ai/platform/h2o-automl/.

https://hpcdocs.asc.edu/
https://h2o.ai/platform/h2o-automl/
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AutoML) interfaces, providing automated access to a variety
f basic and complex ML algorithms. The AutoML is set up to
rain ten models for each ML task with ten-fold cross validation,
sing DL, DRF, GBM, XGB, and LR as the possible candidates
nd previous l topic networks as training sets. It then combines

the resulting trained models to build two stacked ensemble (SE)
models [25]. SEbest is computed by voting the best-performing
models from each ML algorithm family, while SEall utilizes all ten
models. The features have different value ranges and therefore
were standardized to have zero mean and unit variance.

Pilot experiments from journal-specific datasets [18] were ref-
erenced to filter out hyperparameters y, n, and l to remove a large
number of unnecessary iterations over 311 domain topics. Con-
secutive years showed minimal changes to the trained models;
hence y = [2000, 2005, 2010, 2015] were used instead, excluding
the incomplete 2020. n = [100, 250, 500] and l = [1, 5, 9] were
used as they showed significant performance differences within
specific ranges 0 ≤ l ≤ 10 and 100 ≤ n ≤ 500. A total
of 11,196 Td,y,n,l were generated as a result, training a total of
134,352 classification models with ten individual ML models and
two stacked ensemble models.

4.3. Identifying general patterns of emerging topics

The LR model has shown high performance in the experiment,
and the general patterns were identified by building the averaged
linear predictor function lp = xTuβ ′

+β ′

0 using the trained models.
The coefficients β ′

=
1
m · βJm,1 and the intercept β ′

0 =
1
m · β0Jm,1

are averaged over m models by multiplying the matrices with the
vector of ones J . β and β0 from the trained LR models cannot
be directly applied to the raw data as they are the result of
the standardized feature set. The standardization is reversed to
retrieve normal coefficients and intercept, de-scaling the value
and subtracting the added offsets. These are not identical to
the coefficients from the model trained with no standardization,
which often experiences overfitting issues with features with
larger scales. The logistic regression function is then rounded to
generate the binary classification result; 0 for False, and 1 for
True. The datasets are extended to encompass 20 years in the 21st
century y = [2000, . . . , 2019] with less number of algorithms
used, resulting in a total of 44,784 additional models.

5. Results

5.1. Topic emergence identification

The topic emergence identification results were measured for
different Td,y,n to analyze the performance over a different com-
bination of variables. The model with the lowest logloss was
selected out of twelve ML models trained for each training set
given, and average values for 311 d were shown in Table 2. The
summarized result shows that the proposed method is able to
identify topic groups associated with new future topics with high
accuracy ranging around 0.99 auc and aucpr, even using only
topic groups in the directly previous year as the training set.
Logloss, mse, and rmse all show a distinctive decrease with l > 1,
nearly halving the values. This indicates that the likelihood of the
correct prediction increases with a larger training set size. The
differences made by l are less pronounced and are statistically
insignificant with p > 0.1 for all measures. This indicates that the
ethod works with varying dataset sizes, retaining almost all of

ts classification power with 1/5 of the largest dataset used.
While different T show high performances, not all ML models

re successfully trained. Four out of the five lowest performing
omain topics d = [‘ceramic materials’, ‘classical economics’, ‘Key-

esian economics’, ‘polymer science’] have the fewest topic groups,

5

Table 2
Performances of the best-performing topic emergence identification models.
l n auc aucpr logloss mpce mse rmse

100 0.9900 0.9902 0.2426 0.0221 0.0543 0.1905
1 250 0.9897 0.9897 0.2773 0.0237 0.0625 0.1976

500 0.9896 0.9882 0.2778 0.0240 0.0634 0.1984

100 0.9910 0.9912 0.1172 0.0205 0.0288 0.1474
5 250 0.9906 0.9906 0.1120 0.0225 0.0290 0.1496

500 0.9904 0.9891 0.1110 0.0232 0.0290 0.1503

100 0.9909 0.9911 0.1098 0.0208 0.0284 0.1477
9 250 0.9904 0.9903 0.1087 0.0227 0.0283 0.1493

500 0.9902 0.9887 0.1057 0.0233 0.0280 0.1499

indicating that the limited number of topic groups can result in
incorrect classifications. Ceramic materials is showing the least
successful classification results with over 0.4 mpce and 0.54 auc
score; this is because this topic is not fully indexed on the MAG
snapshot used in the experiment. As the smallest dataset used, d
= ceramic materials results in zero topic groups since y = 2017
as no publication is linked to it. Even the non-empty subsets in
y < 2017 have on average 70.1 topics per year when up to
1000 are retrieved for others. This is not the reflection of actual
research communities as around 18,800 related publications since
2017 were indexed in Google Scholar, and there are nine related
publications in the same time slot on the up-to-date live MAG
dataset query result. It is clearly an outlier and therefore is
removed from further analysis.

There are domain topics that result in a very low result
on specific training sets. For d = operation_management, LR re-
sulted in auc(T2010,250) = 0.0997 and auc(T2010,500) = 0.3164
while the average auc of other T reached 0.9894. Similar issues
can be found with other algorithms, as well. When all trained
models are considered, auc(Tmaterials_science,2015,250) = 0.3418 and
auc(Tgeology,2015,500) = 0.4655 can be seen for DRF with l = 1,
as well as auc(Tbusiness,2015,500) = 0.5638 for GBM with l = 5.
The repeated runs result in a trained model with auc > 0.9
with identical algorithms for all such instances, showing that the
labels may be too clearly separated causing regression models not
to work properly. The stark differences shown within the same
domain can also be attributed to the limitation of the proposed
method; it cannot effectively deal with topic groups with multiple
common predecessors. Topic groups are identified solely based
on the neighborhoods of future topics; therefore identical topic
groups will be generated for both labels if a new topic and an
existing topic share the same ancestors. The classification will fail
when there are multiple cases of duplicate topic groups, as it is
trying to find differences between identical data.

The performance of ML algorithms showed no significant dif-
ferences when the top-rank models were compared. One-way
Anova for the models with rank 1 for each of the l, n combinations
resulted in statistically insignificant mean differences with p =

0.25 and p = 0.43 for auc and aucpr respectively. As there are
no major differences between the algorithms, one is selected to
be used for further analysis. Table 3 shows the percentage of ML
algorithms selected as best for each of the topic emergence clas-
sification processes; there were insignificant differences between
SEall and SEbest in terms of performance and therefore they are
merged into one column. The table shows that 33.7% of Td,y,n,l at
minimum had the best results with LR models. The dominance
of LR over the SE indicates that the topic group data are heavily
linear, as the ensemble model is considered to be the strong
model for classifying complex data. It is also worth noting that
DL and DRF were very rarely ranked first. This is because they are
in the more complex spectrum of binary classification and their
full potential cannot be reached with unengineered models. The
limited extrapolation capabilities with the unseen data can also
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Fig. 2. Averaged feature importance trained from Td,y,500,9 .

e the cause of the low performance. The topic group features
ave large variances, implying that there will be several test data
ith the unobserved feature ranges during the training process.
Feature importance analysis revealed that LR also applies dis-

inctive importance to the 15 features used, shown by case stud-
es using n = 500 and t = 9 which is a combination with the least
ogloss as shown in Table 2. Fig. 2 shows the difference between
L algorithms in terms of feature importance using Td,y,500,9,

representing LR as bars and the rest as dots. DL is not shown
in the figure as it generates a set of internal features instead;
SE utilizes DL models and therefore it is also omitted. The figure
shows there are distinctive differences between LR and other
algorithms. #nodes is heavily weighted in the other algorithms
but shows only 42.6% of the averaged importance in LR. This
indicates that the topic emergence prediction is not dependent
on the topic neighbor sizes, which is often considered one of the
major quality metrics for clusters. LR shows much higher interest
for other features instead, putting 9.43, 9.1, and 11.65 times the
weight to avg.deg , avg.dc , and density respectively compared
to the rest. Similar patterns can be found in all Td,y,n,l. LR is
shown to have the best results in general and also has distinct
feature importance patterns showing its unique role in the given
classification tasks. LR was selected to identify general patterns of
emerging topics in the next section; hence it is used for further
analysis.

The performance of the LR models stayed relatively high when
not ranked at the top with the average aucpr score of 0.9819. The
average logloss = 0.2971 is comparably worse compared to the
performances of the best-performing models as shown in Table 2,
but this is reduced down to 0.1197 when more topic networks are
used for training with l = 9. Excluding ceramic materials and a few
other outliers, performance metrics over 311 domain topics with
up to 1000 topic groups over four year periods resulted in high
auc values with low mpce and mse indicating that both the true
positives and true negatives were successfully captured.

5.2. Identifying general patterns of emerging topics

A total of 55,980 models for 311 domain topics over 20 years
were trained with nine sets of training data using the LR algo-
rithm. The general patterns are first extracted using the whole
55,980 models, averaging the coefficients and intercepts from
multiple models to calculate the averaged linear predictor lp =
6

Table 3
Percentages of classification algorithms which resulted in the lowest logloss.
l n DL DRF GBM LR SE XGB

100 9.52% 4.03% 14.35% 38.39% 22.42% 11.29%
1 250 2.34% 14.44% 45.48% 28.95% 8.79%

500 1.21% 11.37% 46.69% 31.13% 9.60%

100 3.39% 23.06% 33.71% 18.55% 21.29%
5 250 1.94% 15.97% 46.13% 18.39% 17.58%

500 0.65% 15.40% 50.65% 20.73% 12.58%

100 3.47% 22.74% 35.48% 17.58% 20.73%
9 250 2.10% 19.27% 41.85% 17.74% 19.03%

500 0.81% 18.39% 47.58% 18.55% 14.68%

Fig. 3. Precision, Recall, and F1 of the topic emergence prediction using the
generalized linear predictor equation lp15 over all Td,y,500,9 , sorted by F1 in
scending order.

Tβ + β0. Using the average coefficients and intercepts for all
models, the linear predictor equation using all 15 features with
4dp becomes as follows:

lp15 = xTβ + β0 = (−0.1407#nodes − 472.0608cohesion
+ 5.9879density + 1.2630transitivity − 0.0034norm.tri
− 1.0100avg.path + 41.4201avg.pr + 6.0566avg.dc
+ 10.4910avg.btc − 0.0229avg.age − 0.0019#edges
− 0.3995avg.deg − 0.0008avg.deg.w + 0.0024avg.edge.w
+ 28.4043avg.c.w) − 1.8725

(2)

The logistic equation is applied to generate the binary outcome
predicted = ⌊elp15/(1 + elp15 )⌉. The predicted labels are then
compared to the actual data.

Fig. 3 shows the prediction results of the generalized lin-
ear predictor equation lp15 over 311 domain topics over the
x-axis, ordered by their F1. A majority of the domains maintained
relatively high F1, indicating that there is a common pattern
across the majority of the research domains when it comes to
the prediction of new topic emergence. F1 below 0.5 in eight
domains shows that there are indeed domains where a common
pattern does not apply or even results in reversed predictions.
This is expected as there are various research domains with dif-
ferent research conventions; there will be domains with unique
research behaviors, unlike the others. This is supported by the
fact that the five d with the lowest F1 are all medical-related
domain topics (endocrinology, internal medicine, surgery, medicine,
and cardiology), and three out of five in ranks 6 to 10 are re-
lated to the specific fields of the economic domain (Keynesian
economics, classical economics, and neoclassical economics). This is
not necessarily the result of the small dataset size; individual
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Table 4
Differences between five features for low-performing five Medical, three
conomic topics, and ten topics with the highest F1 using lp15 .
Features Medical Economics Top 10

norm.tri 131.9102 6.2050 57.8298
avg.pr 0.0574 0.1688 0.0812
#edges 314.1599 17.3343 140.6523
avg.deg 14.9470 3.9370 9.6520
avg.deg.w 24654.3094 346.7999 2863.1532

classifications done in the previous section showed on average
0.9987 and 0.8436 auc for medical and economics-related topics.
The topics were individually able to predict topic emergence,
albeit less so with economic-related topics due to them being the
three fewest topic groups.

The topics with lower prediction accuracies have distinct dif-
ferences in their low F1; medical-related topics show low recalls,
while economics-related topics show low precisions. Medical-
related topics in Table 4 show larger average values for features
with negative coefficients in lp15; avg.deg.w is 8.6109 times larger
than that of the top 10 domain topics, for example, reflecting a
very high topic co-usage pattern in the domain compared to the
rest of the research fields. Differences in the feature values result
in the linear predictor outcome being reduced by 16.7186 on
average, which leads to more False predictions and lower recall.
Economics-related topics on the other hand show an average in-
crease of 9.4488 in the linear predictor outcomes leading to more
True predictions with lower precision. This is mainly contributed
by higher avg.pr as well as lower avg.deg and avg.deg.w, indicating
that these domains share fewer topic co-occurrences.

Several partial lp were generated from different sets of models
to identify a common pattern specific to the given subset. lpl,n
are first generated to represent common patterns specific to the
l and n combination; they resulted in statistically insignificant F1
values with p = 0.1494 when predicting the topic groups within
the combination; there are no significant differences in predictive
capability with different training data sizes. Extracting the linear
predictor for a specific FoS level resulted in significant differences
on the other hand. lplevel=0 and lplevel=1 were generated by averag-
ing the coefficients and intercepts of the models derived from FoS
with the given level, each representing the common pattern in
the top two levels of the six-level topic hierarchy. Fig. 4 shows the
prediction results with from.level_to.level as columns; when they
are applied to the respective FoS they were averaged from (0_0,
1_1), as well as the prediction results for different levels (0_1,
1_0). The lp15 result for all FoS is shown as All_All. The first notice-
able changes are in 0_0, having the highest mean without a long
tail of outliers. This indicates that the high-level domains share a
common pattern detectable with high resiliency. This overarching
common pattern within the level 0 FoS resulted in fewer severe
prediction failures in 0_1 and 1_0 as well, either when it was
captured during the training or when it was identified during the
testing. The lower quartile values for 0_1 indicate the common
patterns found in the lower level are harder to predict using
the higher-level topics; while the level 0 topics share a distinct
common research pattern, more focused level 1 topics have more
variance in their common patterns.

Analysis on the effect of feature filtering revealed that the
main contributor to the poor performance in the majority of
worst-performing models is the avg.deg.w, the mean frequency-
weighted degree. 13 out of the bottom 20 topics showed a sharp
increase in F1 when it was removed from the linear predictor
equation, reaching F1 > 0.9. Six out of seven that did not expe-
rience a significant increase in F1 (Keynesian economics, classical
economics, neoclassical economics, polymer science, astrobiology,

nd earth science) can be explained by their small dataset sizes,

7

Fig. 4. F1 with FoS level hierarchy information. lplevel=0 and lplevel=1 are applied
to the domain topics of the same level (0_0, 1_1) and different level (0_1, 1_0).

Table 5
F1 with iterative feature removal, with the number of remaining features #.
Removed # F1 Removed # F1 Removed # F1

None 15 0.8770 avg.path 10 0.9236 avg.btc 5 0.8852
avg.deg.w 14 0.8951 avg.c.w 9 0.9242 avg.age 4 0.9141
density 13 0.9237 transitivity 8 0.9150 cohesion 3 0.8358
norm.tri 12 0.9241 #nodes 7 0.9221 avg.dc 2 0.7783
#edges 11 0.9244 avg.edge.w 6 0.9196 avg.deg 1 0.7729

leaving only biochemical engineering unexplained. A sharp in-
crease with lp14 shows that the frequency of topic co-occurrence
resulted in an adverse effect when building a general predictor
model. More features were removed from lp15 to identify the
adverse effect each feature has on the prediction outcomes while
generating a shorter linear predictor equation with performance
similar to the full equation in (2).

Table 5 shows the prediction performance with a diminishing
number of variables in lp15, iteratively applying the removal of
a variable that results in the highest F1. The order in which the
features were removed has a moderate correlation with feature
importance with a correlation coefficient of 0.4679, showing that
there were features with higher importance that were more detri-
mental to the performance. The F1 increases with the removal of
the first three features avg.deg.w, density, and norm.tri, reaching
up to F1 = 0.9244. The predictor then retains most of the
prediction performance with a decreasing number of features,
keeping the F1 value above 0.9 until only four of the features were
used except for one outlier with five features. The resulting gen-
eral logistic regression model and the shortened linear predictor
equation lp4 with the four remaining features are

predicted = ⌊elp4/(1 + elp4 )⌉, and
lp4 = (−472.0608cohesion + 41.4201avg.pr

+ 6.0566avg.dc − 0.3995avg.deg) − 1.8725
(3)

which can predict topic emergence related to 311 individual
domain topics with an average F1 > 0.9 with the lower quartile
value of 0.8988 (4dp).

The equation calls for a lower cohesion and average degree,
and higher PageRank and degree centrality for the new labels;
weaker within-connections are desired. The shortened equation
contains features from subgraph, node, and edge-related cat-
egories but not the weighted category; while the information
external to the topic group is needed, the node and edge fre-
quencies are not required. Fig. 5 shows that while the predictors
share a similar maximum F1, predictors with fewer features
have higher performance when the worst three features were

removed. Reducing the number of features from 12 to 4 increased
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Fig. 5. Comparison between lp15 , lp12 , lp8 , and lp4 using box and whiskers plots
f their F1 distributions. The features are removed following the order in Table 5,
nd the y-axis is cut out at F1 = 0.70 removing a few outliers from the figure.

he performance variance but retained F1 > 0.9 for nearly 3/4 of
he datasets. This shows that the shortened linear predictor does
ontain knowledge about the emergence of new topics in terms of
heir future ancestors and their subgraph properties in the topic
etwork.

. Conclusion

The network-based topic emergence prediction method is ap-
lied throughout the wide range of research domains in this pa-
er to validate the generalizability of the method and to identify a
eneral pattern for emerging research topics. The emergence of a
ew topic is defined as a node added to a network. It is assumed
hat the shared interest matures over time until a new topic is
ormed as a common neighbor, and the materialization of such
opics is reflected in specific structural features of their neigh-
oring topics within the topic network. This approach allows the
rospective prediction based on the observed patterns by simple
eans of extrapolation, which is harder to achieve with the more

raditional text-based topic models without having access to the
on-existent future documents. Topic co-occurrence patterns in
ifferent domains were first captured by applying multiple binary
lassification models to show the method is generalizable with
ifferent ML algorithms over a variety of research domains. The
rained models are then averaged to create a general predictor
quation classifying whether the future neighbor of the given
opic subgraph is new.

The binary classifiers were able to distinguish ancestors of
new topics with high accuracy. Barring a few outliers with in-
sufficient data, the performance retained most of its values even
with the lower number of rows used. Training the model with
only one topic network in the previous year resulted in auc and
ucpr over 0.98, showing a clear tendency of having linear data
y having the logistic regression as the most frequently best-
erforming model. The high performance is pervasive over the
ajority of the datasets, each centered around one of the domain

opics, showing auc over 0.9 for 306 out of 311 datasets. The
esults show that the new topics exhibit distinct, measurable
ifferences from the existing ones, and the existing ML algorithms
an be trained to identify the emergence of new topics without
ptimizing individual tasks with hyperparameter tuning.
The logistic regression algorithm has the highest model in-

erpretability, and the trained models are analyzed to evaluate
he possible existence of a common pattern for emerging topics.
he results showed that there is indeed a domain-independent
attern that can predict topic emergence with high accuracy. The
8

averaged predictor resulted in F1 above 0.9 for 59.68% of the
experimented domains. The low performances in some of the
medical and economic-related domains indicate that they have
distinctive topic group structures, which can be shared among
a specific subset of research fields. A universally applicable pre-
dictor model will be available with hierarchy or similarity-based
model grouping.

The results showed that the topic group data not only are
linear but also have lower dimensions than previously assumed.
Removing features resulted in heightened performances, result-
ing in the generalized topic predictor function with four features.
The proposed function accurately predicted topic emergence in
a variety of academic domains, validating the assumption that
emerging topics share a general pattern. Future work can include
extracting a set of topic group candidates without accessing the
future neighborhood information, which would allow prospective
topic evolution prediction.
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