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Abstract
The increasing complexity of artificial intelligence models has given rise to extensive work 
toward understanding the inner workings of neural networks. Much of that work, how-
ever, has focused on manipulating input data feeding the network to assess their effects 
on network output or pruning model components after the often-extensive time-consuming 
training. It is shown in this study that model simplification can benefit from investigating 
the network node, the most fundamental unit of neural networks, during training. Whereas 
studies on simplification of model structure have mostly required repeated model train-
ing, assessing evolving trends in node weights toward model stabilization may circumvent 
that requirement. Node magnitude stability, defined as the number of epochs where node 
weights retained their magnitude within a tolerance value, was the central construct in this 
study. To test evolving trends, a manipulated, a contrived, and two life science data sets 
were used. Data sets were run on convolutional and deep neural network models. Findings 
indicated that neural network progress toward stability differed by model, where CNNs 
tended to add influential nodes early during training. The magnitude stability approach 
of this study showed superior time efficiencies, which may assist in XAI research toward 
producing more transparent models and clear outcomes to technical and non-technical 
audiences.
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1 Introduction

The increasing accumulation of data today is leading us into a future where artificial 
intelligence (AI) is becoming ever more central. Self-driving cars, robots expressing 
emotions, real-time language translation, virtual teachers, and diagnoses in healthcare 
are examples where AI excels (Jordan and Mitchell, 2015; Hamet and Tremblay, 2017; 
Kaul et al., 2020; Martin et al., 2021). The outlook of AI on our everyday life is short of 
revolutionizing. The benefits brought to society by AI, unfortunately, do not come with-
out hindrances. One consequence of the increasing complexity of AI models, of which 
neural networks are one of the most common flavors, is lack of understanding of their 
inner workings, especially on how the information from input data is used in producing 
model outcomes. One cause of such obscurity is that neural networks are increasingly 
becoming overparameterized (Denil et  al., 2013; Sze et  al., 2020; Yeom et  al., 2021), 
which hinders their understanding. Better understanding of how models use information 
may lead to insights into human learning or uncover new knowledge in science (Raghu 
and Schmidt, 2020; Makino et  al., 2022). Knowledge of the inner workings of neural 
network models may be advanced if a bottom-up, neuron-focused approach is under-
taken, as the ultimate construct determining network outcomes is the neuron.

Understanding the neuronal patterns as a function of input may better assist in defin-
ing what neural networks learn and how. Knowledge of the relational link between 
model input and output may help in constructing simpler models, assisting in fine tuning 
hyperparameters, or in creating more efficient and safer algorithms (Bhatt et al., 2020; 
Ivanovs et  al., 2021; Quinn et  al., 2021), all in the interest of the continued improve-
ments in the understanding of AI systems. Such understanding, however, is contingent 
on model complexity. Models of simpler structure, with fewer parameters, are more 
tractable, thus more transparent, than their full-parameter counterparts. The challenge in 
reducing structural complexity is centered on which components from models to elimi-
nate without compromising predictive power or unduly adding time to model training.

This work offers an approach on how simplification in the structure of neural net-
work models can be accomplished in a time-efficient manner, without incurring the time 
costs from repeated training during model pruning tasks with different sparsity param-
eters. Because the time effort associated with model training will only increase as mod-
els become more complex, a means to simplify such models while selecting sparsity 
parameters without requiring model retraining may not only eliminate or diminish time 
constraints, but also more significantly simplify model structure upon training comple-
tion. To that effect, this study proposes the use of a construct to find influential model 
nodes with the objective of simplifying model structure in a time-effective fashion with-
out compromising model predictive ability. Node magnitude stability was the central 
construct to realize the objective of this study. Magnitude stability was defined as the 
number of epochs where node weight values retained their magnitude within a tolerance 
from that of the stable, trained model, defined in this study as models with predictive 
accuracy ≥ 0.90.

To achieve the goal of this work, the remainder of this paper is organized as follows. 
The next section will cover studies attempting to shed light on model simplification 
through pruning or manipulation of input data. The third section will offer the theory 
behind the analytical construct of this study. The fourth section will cover this study’s 
experiments and describe a comparison between the method proposed in this study and 
a popular model simplification approach. The fifth section is reserved for findings. The 
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last two sections will bring together this study by discussing the relevance of its findings 
and concluding with suggestions for future research.

2  Related work

Studies toward AI model simplification may consist of removing neural network compo-
nents, either from the model, such as neurons, or features from the input data. Selecting 
which components need removal is mostly done heuristically by selecting nodes with low 
weights due to their small influence on model outcomes (Han et al., 2016; Iandola et al., 
2016). Perhaps one of the earliest work in neural network model simplification is the study 
by Glorfeld (1996), which used back-propagation to eliminate input features from a classi-
fier not contributing to prediction accuracy. In a study removing one neuron at a time from 
a neural network during model training, Srinivas and Babu (2015) show the redundancy of 
similar neurons, providing a methodology for their removal based on knowledge distilla-
tion (Hinton et al., 2015). Simplification has also been attempted by network compression, 
with redundant connections identified during training, followed by pruning unimportant 
connections, and retraining the model on the remaining connections (Han et  al., 2016). 
Focusing on the pooling layers of convolutional neural networks (CNN) has also been used 
as an approach to model simplification. A simplified convolution operation by learning a 
pooling operator from image feature channels has reduced model complexity without com-
promising performance (Sun et al., 2017). Still on input feature, Zou et al. (2018) proposed 
an iterative method for input feature pruning during training for CNN by eliminating fea-
tures with low discrimination power in producing model outcomes.

More recent work on network simplification has been added as neural network com-
plexity is increasing, showing the concerns with understanding how AI models work in 
light of more complex models. In a study attempting to make neural network models more 
transparent, Singla et al. (2020) generated progressive perturbations to the input image and 
observed a correspondence in the output, thus synthesizing the input to a selection of most 
important features to be retained by the final model. Simplification techniques have also 
been used in AI applications in the medical field. Choudhary et  al. (2021) used transfer 
learning in combination with structured filtered pruning for histopathology classification, 
showing that the reduced model outperformed the full model version. In attempting to sim-
plify CNN model topology, Hajabdollahi et al. (2019) used hierarchical pruning, gradually 
removing components, for diabetic retinopathy applications. A lightweight model for lum-
bar spondylolisthesis diagnosis has been developed for small-scale devices, demonstrating 
the importance of model simplification for widespread use on various applications (Sara-
vagi et al., 2022). Using a monotonic decreasing parameter to decay neural network filter 
weights, Cai et al. (2021) was able to achieve a 40% pruning on ResNet-34 without loss in 
accuracy. In comparing linear, oscillating, and exponential decay rules for weight prun-
ing of a multi-layer perception model, Chouliaras et al. (2022) showed faster convergence 
when using exponential decay, with an additional benefit of an upward of 95% memory 
footprint reduction of the final pruned model version compared to the full model. Lastly, 
input simplification by minimizing image bit size, thus removing redundant features, has 
been used in simplifying neural network models (Schirrmeister et al., 2022).

The studies above show a significant potential for model simplification, without com-
promising accuracy, promoting model understanding. Those studies, however, required 
additional time from post-training processing tasks, adding to the already lengthy model 
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development task. Investigating how neural network weights evolve from random to stable 
values may provide indications on how to reduce complexity during training. By investi-
gating node weight patterns according to the methodology below, this work aims to further 
our understanding of the processes occurring between data input and model outcomes of 
AI applications.

3  Analytical construct formalization

Analyses in this study were based on the construct of node magnitude stability, herein 
defined as the number of epochs where node weights within a layer retained their value 
from that of the stable model within a given tolerance. Node weight magnitude was used as 
a construct for this study due to weights potentially predicting model accuracy and serving 
as a base for optimizing model hyperparameters (Eilertsen et al., 2020; Martin et al., 2021; 
Unterthiner et al., 2021). Additionally, considering how weights stabilize during training 
may provide further benefits in understanding the operation of neural networks.

The underlying analytical flow for magnitude stability to neural network model prun-
ing (Fig.  1) relies on stable nodes holding their position throughout training. Which 
nodes become stable may be completely random, determined somewhere during train-
ing, but once fixed, a node value should not vary widely, going from significant to unim-
portant in determining model outcome. Moreover, accretion of magnitude stability must 
be a function of input data because data properties, such as their size or within-class 
variance, are what determine model predictive performance. What is less clear is the 

Fig. 1  Analytical flow for the 
magnitude stability approach to 
neural network model pruning
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influence of model choice on the accretion of magnitude-stable node positions during 
training. What can also be of value is the relative importance of input data and model 
in determining magnitude stability. One may not have a choice as to data quality, but 
choosing models is less of an impediment.

Node magnitude stability is formally defined as

where W = weight, i = row, j = column, k = depth (color channel), t = epoch, and � = tol-
erance. To determine magnitude stability, all nodes from a model layer at each epoch are 
sorted by their weight absolute value. The sorted nodes of the last epoch are used as refer-
ence. The position of reference nodes is noted and followed backward to the first epoch. 
The number of consecutive epochs from the reference nodes where node weights in the 
same position retain a value within a tolerance is defined as the magnitude stability for that 
node position.

To assess the underlying mechanism that governs model pruning using the construct 
of magnitude stability may be assisted by a formulation of the process through training 
time describing accretion of magnitude-stable node positions. It is postulated that the 
accretion will start slow due to the randomness or quasi-randomness of model weight 
initial conditions. As training progresses the most influential nodes for model predic-
tion are fixed early, followed by less influential nodes late during training. The process 
herein proposed for describing node accretion depicts cases ranging from few influential 
nodes at one extreme to a large number of nodes contributing to model predictive abili-
ties (Fig. 2).

The functional relationship detailed above may best be described by a biological 
growth curve, commonly used in theoretical population ecology (Kingsland, 1982; 
Hall, 1988; Kareva and Karev, 2018). Growth in a natural population tends to start slow, 
accelerate shortly after, when resources abound, and level off toward the end, when 
those same resources are over-exploited. The same pattern might be observed during the 
addition of influential nodes in neural networks, where few are added at first but accu-
mulate as training progresses. The biological growth curve adapted to this study takes 
the form

lim
t→∞

|Wijk,t −Wijk,t−1| ≤ �

Fig. 2  Theoretical relationship 
between the mean number of 
magnitude-stable nodes and 
training epoch
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where t is as above, and Nt is the number of magnitude-stable nodes at epoch t, K = maxi-
mum number of magnitude-stable nodes, N0 = number of stable nodes at the first epoch, 
and r = the rate of magnitude-stable node accretion during model training. This relation-
ship is able to capture both accretion rate extremes above for number of influential nodes 
determining model predictive power. Moreover, due to its closed form, it may be readily 
solved after each epoch and used in conjunction with algorithms for model training to esti-
mate the rate of magnitude stability accretion for deciding on possible early stopping of 
training or pruning less significant nodes.

Early stopping, a compromise approach between training time and model accuracy 
(Montesinos et  al., 2022), has been used in response to the need of improved time-effi-
ciencies in gradient boosting, natural language process, and facial recognition applications 
by means of feature extraction, manipulations of learning rates, or token skipping Zeng 
et al. (2022), Ye et al. (2021), Kaya et al. (2019), Guan et al. (2022). Using the approach 
proposed in this study in conjunction with existing early stopping methods might result in 
improved training efficiencies due to elimination of non-influential nodes while training.

4  Experiments

4.1  Data sets

Experiments were done to assess randomness of magnitude stability in neural networks. 
If the process of magnitude-stable node accretion is completely random, independent of 
models and input data, there is little point in attempting to understand networks in an effort 
to produce time-effective pruning mechanisms. Toward that effect, a processed, contrived, 
and two data sets from life science were used in this study’s experiments and a popular, 
unmodified data set for the simplification approach demonstration. The processed data 
set (PR) was a reduced version of the MNIST handwritten data set. One-hundred images 
per category were randomly selected from the MNIST data set to keep accuracies from 
reaching high values early during training. Avoidance of high early accuracy was to enable 
investigation of patterns in weight value progression during training, as per experiments 
below. The first life science data set (SC) was of Gulf menhaden (Brevoortia patronus) 
scale black-and-white images, used in estimation of fish age. Classes for this data set were 
0–4, the possible observed ages for the target fish. The number of images within each class 
was 530, of 100 by 100 pixels each. The second life science data set (XR) was of pneumo-
nia x-ray images. This latter data set was of 500 100 by 100 pixel grayscale images, with a 
category for pneumonia presence and one for absence.

The contrived data set (CT) was generated to have better control and understanding of 
model output, especially the number of epochs before stabilization. Having better control 
of model output might enable finer and more accurate study findings and interpretation. 
The contrived data set comprised of grayscale images with 10 shades of gray, producing 
10 classes, which formed the inputs to neural network models. The classes for this data set 
were generated by sampling from a Gaussian distribution with means of 20, 50, 75, 100, 
125, 150, 175, 200, 225, and 240 to mimic pixel depth for grayscale images. The means 
selected for classes were chosen to ensure an even spread of shades of gray among classes. 

Nt =
K

1 +
(K−N0)

N0

e−rt
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The standard deviation was 1,000 across all classes, which allowed model convergence 
within an adequate number of epochs. Data points that were below zero or above 255, the 
range for grayscale image shades of gray, were forced to take the minimum or maximum 
value, respectively, of that range. The number of generated images within each class was 
50, each of size 100 by 100 pixels.

A demonstration of the effectiveness of this study’s approach to simplification was con-
ducted to show how the findings of this study can be applied to further research in XAI 
by providing an alternative method to achieve simpler, more interpretable, neural network 
models. The demonstration was based on the full MNIST data set. The full MNIST data 
set was used in the interest of research reproducibility and because of its frequent use in 
research, enabling more ready comparisons with existing research studies in XAI and 
model simplification.

4.2  Models and runs

To address randomness in magnitude stability, experiments were conducted to investigate 
patterns in the progression during training of node weights according to AI models, data 
sets, and epochs. Epochs were used as the time surrogate in assessing training weight pro-
gression. The models tested were deep neural networks (DNN) and convolutional neural 
networks. Models were chosen because both, CNN and DNN share a fully connected layer 
architectural component, making result comparisons more robust. The DNN model archi-
tecture consisted of a flattened input layer, six fully connected layers of 30 x 30 nodes, and 
the output softmax layer. The CNN model comprised of an input, a fully connected, and an 
output set of layers. The fully connected and output layers were as in the DNN model. The 
CNN input layer consisted of a sequence of three convolution layer (3 x 3 kernel) and max 
pooling layers, followed by another convolution layer, and ending with a flattened layer. 
The flattened CNN layer served as the input to the fully connected layer. To keep com-
parisons consistent, a ReLU activation function, Adam optimizer, He-Normal initializers, 
batch size of 32, and the learning rate of 0.001 were used throughout.

Images in the data sets above were fed one at a time into the input layer of the above 
models. Images were flattened and padded to keep size consistence prior to model input. 
Padding was done by addition of extra pixels of value 0, mimicking an empty, black back-
ground. Each image pixel corresponded to a node in the input layer to the model tested.

Both, DNN and CNN models were run toward stabilization on the four data sets above 
in replicates of 50. Each replicate was run for 150 epochs. Model runs that did not con-
verge to at least 0.90% accuracy were re-run for inclusion in analysis. After each epoch, 
the current model accuracy and the node weights from the layer before that for the soft-
max activation were extracted for node pattern analysis (focus layer henceforth). The last 
layer was used for analysis due to its highest stability in representation as data propagates 
through the network Goodfellow et al. (2009), Montavon et al. (2011). Node analysis con-
sisted of an assessment of whether the progression of node weights from the initial run to 
stabilization could be predicted as to the stability of their value, potentially identifying the 
most significant nodes in determining model accuracy early in the training process.

4.3  Data analysis

To investigate magnitude stability, a visualization approach was developed for the 
focus layer according to the above experiment. A biological growth curve was fit to and 
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associated parameters shown for the magnitude stability data as an aid for visualizing the 
shape of the relationship between epoch and magnitude stability. A growth curve was fit for 
each combination of the models and data sets discussed above for a better understanding of 
the differences in growth characteristics according to those factors.

Statistical analyses in this work to assess randomness were based on the construct of 
node magnitude stability, defined and determined as above. To test for neural network node 
patterns in weight evolution through time, the statistical significance of magnitude stability 
was assessed. The tolerance for node magnitude stability was taken to be 3%. Only nodes 
from the focus layer were tested. Stability patterns were assessed with a generalized linear 
model (GLM) using magnitude stability as the response variable with a quasi-Poisson link 
function. The predictors for the GLM were the model type, of levels DNN or CNN, and the 
data sets, of levels CT, PR, SC, and XR. The Tukey’s Honest Significance post-hoc GLM 
was used to infer within-mean differences for statistically significant factors.

An additional test was performed for assessing the relationship between the number of 
stable nodes and training time. The relationship was tested in two steps. The first step con-
sisted of using a linear regression to estimate the slope of the relationship between epochs, 
the independent variable surrogate for training time, and the number of stable nodes in the 
focus layer for each replicate as above. Stable nodes were defined as nodes that were mag-
nitude-stable at a given epoch, i.e., nodes that retained their value within the above toler-
ance from that of the last epoch. For each epoch, stable nodes were counted and used as the 
response variable in the regression analysis. The response variable was logarithm-trans-
formed prior to estimating regression parameters to ensure assumption meeting of homo-
scedasticity. The second step in analyzing node progression was to examine the slopes of 
the regression analysis obtained in the first step. An analysis of variance (ANOVA) using 
as factors model and data set, and the regression slopes as the response variable was 
conducted.

4.4  Comparison of methods

Comparison of model simplification approaches were done contrasting the exponential 
decay (ED) method (Chouliaras et al., 2022), one of the most popular and efficient (Liang 
et  al., 2021), against the node magnitude stability approach proposed in this study. For 
magnitude stability, tolerance values of 0.01, 0.03, 0.05 were used in comparisons. The ED 
method consists of removing neural network nodes by identifying node weights that gradu-
ally decay to zero, instead of the more common pruning alternative of removing nodes of 
weights below a given threshold. A gradual, smooth decay tends to preserve trained infor-
mation in nodes (Chouliaras et al., 2022).

Node magnitude stability was determined by extracting the weights of the focus layer 
for each epoch from the trained model. Stability value was calculated by first sorting 
the weights from each epoch. Second, starting from the last epoch, counting nodes that 
retained their value within the specified magnitude tolerance was done. Finally, nodes to 
eliminate were selected from the focus layer. Node elimination was done by choosing a 
stability value (surrogate for sparsity) within the number of epochs used to train the model. 
Nodes of magnitude stability smaller than the chosen value were eliminated (assigned zero 
weight value). Note that choice of stability value subsequent from the first does not require 
model retraining.

Method comparisons were done using elimination of nodes from the focus layer. For 
the ED method, nodes were eliminated until a threshold sparsity was achieved. Sparsity 
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threshold values ranging from zero, no nodes eliminated, to 100% were examined. After 
each threshold choice, model retraining was required for re-estimation of accuracy. Alter-
natively, when testing for magnitude stability, their stability values as defined above were 
used as a surrogate threshold for sparsity. Magnitude stabilities ranging from one to the 
maximum possible value, the number of epochs, were used. Models for the demonstration 
of this study were of the same structure and trained using identical parameters as above, 
except for epochs. Epochs for testing the ED model were only three, the minimum to 
achieve model convergence. To allow for magnitude stability to reach values for adequate 
comparisons, 100 epochs were used for testing the method proposed herein.

Five model runs for CNN and five for DNN were conducted for replication. Model 
predictive accuracy, number of nodes with non-zero weights, and time to pruning were 
recorded for both methods tested.

5  Results

The visualization approach conducted as above showed that the number of magnitude-sta-
ble nodes at the focus layer as a function of epoch tended to fit a biological growth func-
tion shown in Fig. 2. Runs for the DNN models tended to show a weak early growth with 
a rapid growth toward the end. The reverse was observed for CNN models. The timing of 
the accelerated growth for CNN models was different for the data sets tested, with the PR 
starting at the earliest. The CNN runs generally followed a biological growth curve cover-
ing an entire life of an organism or population, in that it grew fast early and levelled off at 
later epochs. For the DNN, the growth curve shape was more characteristic of a population 
unconstrained by resources, where growth tends to be exponential (Hall, 1988). Addition-
ally, DNN runs on the PR, SC, and XR data sets showed unrealistically high values for 
the theoretical maximum number of magnitude-stable nodes, characteristic of a population 
with unlimited resources (Fig. 3).

All experimental runs for testing magnitude stability randomness reached stability after 
150 epochs, many of which achieved accuracies well above 0.90. Exceptions worth men-
tioning were models run on the CT data set. For CNN models, an additional 42 runs and 
for DNN models, an additional 6 runs had to be conducted to reach 50 replicates for that 
data set.

Magnitude stability averages within model and data set were always highest for CNN 
models. Also, stability values for CNN models tended to be more consistent, as indicated 
by the smaller standard deviations. Average magnitude stability for factor model over all 
data sets was 133.7 ± 32.20 standard deviations (SD) for level CNN and 78.1 ± 53.46 SD 
for level DNN. For factor data, average magnitude stability over all models was 71.8 ± 
61.57 SD for level PR, 121.8 ± 35.90 SD for level CT, 118.3 ± 41.76 SD for level SC, and 
111.8 ± 49.59 SD for level XR. The lowest magnitude stability for the CNN model was 
observed for the PR data set. The other data sets for that model were of similar magnitude 
stability. Magnitude stabilities for data sets run on the DNN models were more variable, 
perhaps an indication of sudden additions of magnitude-stable nodes during training. The 
higher standard deviations for the data sets run on the DNN model are also an indication 
that magnitude-stable nodes were added at irregular times during training (Table 1).

The GLM results showed factors model (p ≤ 0.01, F-value = 587,949), and data set 
(p ≤ 0.01, F-value = 3,908) to be highly significant predictors, indicating that magnitude 
stability was dependent on those factors. The model factor had the highest influence on 
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the GLM results (as per F-values), indicating it had a stronger effect on the response 
variable than did the factor data set (Table 2). This is encouraging results because mod-
els, unlike data sets, can be adjusted and modified toward successful pruning based on 
the concept of magnitude stability. Post-hoc analysis also indicated highly significant 
differences in mean magnitude stability among all the data sets (Table 3).

Fig. 3  Relationship between the mean number of mangitude-stable nodes in the focus layer across repli-
cates and epoch; red lines are the fit to the growth function, black lines are the observed data; PR processed, 
CT contrived, SC scale, XR x-ray data sets
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The results following ANOVA analysis on the slope of the regression of epochs on the 
logarithm of magnitude-stable node counts also showed high significance for the factors 
model and data set. As per the F-value, the factor model (p ≤ 0.01, F-value = 110.7) was 
more influential in determining the slope than was the factor data set (p ≤ 0.01, F-value = 
15.6), a parallel result from the GLM analysis for the higher influence of models over that 
of input data (Table 4). The factor model, therefore, was the most important in defining 
the rate of addition with epoch of magnitude-stable nodes. The benefit of this finding is as 
above reported for the GLM analysis. Post-hoc analysis for the ANOVA indicated statisti-
cal significance for mean magnitude stability differences between the XR and CT, XR and 
PR, and XR and SC data sets, with only a marginal significance between the SC and PR 
data set (Table 5).

Comparisons of model simplification approaches consistently showed over one order 
magnitude larger time efficiencies for magnitude stability than the ED model simplification 

Table 1  Summary statistics of 
node magnitude stability for 
experiments using CNN and 
DNN models on a contrived 
(CT), processed (PR), fish scale 
(SC), and x-ray (XR) data sets, 
MRS mean magnitude stability, 
SSD magnitude stability standard 
deviation

Model Data set MRS SSD

CNN CT 130.3 26.76
CNN PR 118.9 48.78
CNN SC 142.8 17.79
CNN XR 142.9 18.39
DNN CT 113.2 41.42
DNN PR 24.8 27.81
DNN SC 93.8 44.44
DNN XR 80.6 51.37

Table 2  Results for the generalized linear model testing node magnitude stability for experiments using 
CNN and DNN models on a contrived (CT), processed (PR), fish scale (SC), and x-ray (XR) data set, DF 
degrees of freedom, SSQ sums-of-squares

Factors DF SSQ F-value p-value

Data set 3 15,202,416 3,908 < 0.01

Model 1 762,470,774 587,949 < 0.01

Residuals 359,995 466,852,693

Table 3  Tukey’s honest 
significance difference post-
hoc results of node magnitude 
stability for experiments using 
CNN and DNN models on 
contrived (CT), processed (PR), 
fish scale (SC), and x-ray (XR) 
data sets

Difference Lower Upper p-adjusted

Data sets
 PR-CT − 49.9 − 50.4 − 49.5 < 0.01

SC-CT − 3.5 − 3.9 − 3.0 < 0.01

XR-CT − 10.0 − 10.5 − 9.5 < 0.01

SC-PR 46.5 46.0 47.0 < 0.01

XR-PR 39.9 39.5 40.4 < 0.01

XR-SC − 6.5 − 7.0 − 6.1 < 0.01

Models
DNN-CNN − 55.6 − 55.9 − 55.4 < 0.01
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method. Both methods showed similar accuracies roughly until 25–30% sparsity values. 
The magnitude stability method tended to decay in accuracy more gradually. Higher toler-
ance values for magnitude stability tended to hold higher accuracies for longer (Fig. 4).

6  Discussion

This study shows that magnitude stability is a function of model and data, discarding the 
contention that neural network learning is a completely random process. Model stabiliza-
tion tended to occur later for DNN, rather than early during training, as for CNN mod-
els. The timing when those weights and their stability was established might have varied 
among individual runs, but did show a clear pattern according to model and data set. This 
lends support to the existence of a critical period when training performance is determined 
(Golatkar et al., 2019). Establishing that critical period may be useful in further advancing 
network simplification as proposed in this study by combining simplification with early 
stopping. If the critical period matches or is close to the inflection point along the growth 
curve, training may be stopped then, resulting in a model with simpler structure without 
lowering its predictive power.

The GLM and ANOVA results showed that the factor model not only is important, but also 
that it had the highest influence in determining magnitude stability and at which point during 
training stability is reached. One explanation may be that CNN and DNN models tend to have 
distinct predictive powers. The growth of magnitude-stable nodes with epochs indeed followed 
a biological population growth process. Growth with epochs showed that CNN models added 
significant nodes in determining stabilization early during training, given the general shape of 
the relationship between stable nodes and epochs. It is also worth noticing that the early addi-
tion of stable nodes implies that more influential nodes for CNN models are observed than for 

Table 4  Results for the AOV model testing addition rate of magnitude-stable nodes for experiments using 
CNN and DNN models run on a contrived (CT), processed (PR), fish scale (SC), and x-ray (XR) data sets, 
DF degrees of freedom, SSQ sums-of-squares

Factors DF SSQ F-value p-value

Data set 3 < 0.01 15.6 < 0.01

Model 1 < 0.01 110.7 < 0.01

Residuals 395 < 0.01

Table 5  Tukey’s honest 
significance difference post-
hoc results of node magnitude 
stability addition rate for 
experiments using CNN and 
DNN models on contrived (CT), 
processed (PR), fish scale (SC), 
and x-ray (XR) data sets

Difference Lower Upper p-adjusted

Data sets
PR-CT − 0.001 − 0.002 0.001 0.712
SC-CT 0.001 − 0.001 0.003 0.487
XR-CT − 0.003 − 0.005 − 0.002 < 0.01

SC-PR 0.002 < 0.001 0.003 0.064
XR-PR − 0.003 − 0.004 − 0.001 < 0.01

XR-SC − 0.004 − 0.006 − 0.003 < 0.01

Models
DNN-CNN 0.005 0.004 0.006 < 0.01
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Fig. 4  Comparison of model simplification methods; ED is exponential decay, MS is magnitude stability; 
values are mean algorithm run times ± standard deviations between sparsity values; 0.01, 0.03, and 0.05 are 
tolerances used for magnitude stability model simplification runs
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DNN models at early epochs, when pruning might be conducted. This finding may be critical 
in understanding model output. If more nodes are significant, linkages between model weight 
patterns and patterns of model input data can be simplified and possibly made more apparent 
when training is stopped at early epochs. This finding, therefore, implies that the final model 
will comprise of fewer nodes, producing a simpler model more conducive to transparency of 
outcomes, provided early stopping still produces acceptable model accuracies.

Perhaps the most practical finding from this study is the overwhelming gain in time using 
magnitude stability when simplifying neural network model structure. The ED method 
requires model retraining after each selection for sparsity value. Conversely, magnitude stabil-
ity requires only a count of node weights within a tolerance range prior to running the simpli-
fication algorithm. The time gain using magnitude stability may even be an underestimation. 
The MNIST data set with only three epochs was used for testing the ED method in this study. 
The choice of epochs was adequate for the data set used, but may be an unrealistic selection 
for most practical applications. Neural network models in today’s applications mostly require 
many more epochs to reach stability (Aggarwal, 2018). Additionally, models may be trained 
for several days and even weeks. Under such scenarios, model retraining for simplification 
is impractical. Using an alternative simplification method that only requires a few matrix 
operations is a preferred choice, especially with the increasing trends in model deployment to 
devices of limited processing and storage (Malik et al., 2022; Yuan and Agaian, 2023).

Model simplification using magnitude stability, however, has its limitation. The rapid loss 
in accuracy values from models simplified using magnitude stability may perhaps be met 
with discouragement. That loss, however, must be taken lightly. At the initial stages of sim-
plification, losses are negligible, making the magnitude stability method a preferred choice 
in situations where multiple choices for sparsity used in simplification are required. One such 
use-case might be in research, where one might want to investigate data representation robust-
ness with varying degrees of simplification. Using magnitude stability in this latter scenario 
allows a researcher to test several versions of simplified models without the added time burden 
imposed by alternative methods.

The concept of value stability in this study hinges on the choice of the tolerance value. 
The larger the tolerance, the more stable a value will be. The choice of that value, however, 
is less arbitrary than appears on the surface. The time cost of model training, especially when 
complexity is high, will mostly be large. That cost, however, is low compared to cases where 
misclassification is high, such as in many healthcare AI applications. Due to training time, 
popular simplification methods may impede fine adjustments of model sparsity to minimize 
misclassifications. In case of applications in need of light-weight models, repeatedly adjusting 
the tolerance when using the magnitude stability concept may be a strategy without incurring 
prohibitively high time costs.

As suggestions depend on each application, making strong cases for or against the choice 
of tolerance values might be unwise. Starting with a high tolerance value and observing the 
effects on model performance and sparsity might be a better approach than initially consider-
ing low tolerances, which might over prune models and compromise performance.

7  Conclusions and future work

In general, this work suggested that the progression toward model stabilization using mag-
nitude stability as a metric was not linear. The evidence for an exponential relationship 
between magnitude stability and epoch was particularly appealing for DNN models, where 
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magnitude stability more evenly grew toward the end of training, without plateauing after-
ward. Conversely, for CNN models, the fit to the biological growth curve indicated that 
addition of stable nodes leveled off after some point during training. Particularly for CNN 
models, using the findings of this study to lower training time through tasks such as prun-
ing may be attempted with success. Training may stop when reaching the plateau, saving 
training time, along with simplifying the model by eliminating non-stable nodes. Regard-
less of findings, however, this study points to the possibility of making training more effi-
cient and models more transparent. Expanding on this study’s findings, therefore, may only 
further add to the potential benefits of this work.

This study’s experiments show that randomness does not dominate neural network 
learning. To capitalize on this, the concept of magnitude stability for model structure sim-
plification was offered. Additional work in line with this study’s approach might be inves-
tigations on spatial patterns according to magnitude stability values. Examining if a spatial 
structure exists when viewing a layer as a 2-D or 3-D array may assist in better understand-
ing how the network represents input data. More on further studies, the results of this study 
apply only to the last layer before the softmax of CNN and DNN models. Assessing other 
layers might provide a better picture of how a network can be further simplified. Adding 
additional layers from the fully connected layers of CNN and DNN models might be chal-
lenging because of the complex dependencies of weights from different layers. A weight 
from a given layer is dependent on the weights of all previous layers, making selection 
on which weights to eliminate from previous layers a challenge. Future work extending 
the results of this study, such as multilayer model simplification using magnitude stability, 
may not only offer better, more effective models, but also, possibly more importantly, aid 
in closing the gap between model complexity and understanding, hopefully matching the 
speed in model advances with how fast we understand their inner workings.
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