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Abstract

Knowledge processing has patterns which can be found in biological neuron activity and arti-

ficial neural networks. The work explores whether an underlying structure exists for knowl-

edge which crosses domains. The results show common data processing patterns in

biological systems and human-made knowledge-based systems, present examples of

human-generated knowledge processing systems, such as artificial neural networks and

research topic knowledge networks, and explore change of system patterns over time. The

work analyzes nature-based systems, which are animal connectomes, and observes neu-

ron circuitry of knowledge processing based on complexity of the knowledge processing

system. The variety of domains and similarity in processing mechanisms raise the question:

if it is common in natural and artificial systems to see this pattern-based knowledge process-

ing, how unique is knowledge processing in humans.

Introduction: Knowledge and brain

Thinking can be defined as manipulating information, reasoning, and making decisions.

Thought is based on building patterns of knowledge in a system. Can there be an underlying

structure that repeats across systems, when these systems process information for different

purposes and seem to have different infrastructures?

The theory of knowledge has evolved over the last 2,500 years, starting from the idea that

“knowledge is perception” [1] and that these perceptions are processed in the brain [2]. The

neuron was identified as the smallest knowledge processing mechanism in the brain [3].

Today the brain is seen as a network of nodes and relations [4]. Each section of the brain

forms a smaller network with specific functionality, and the different sections are connected

together. Some sections of the brain have been identified to perform specific tasks. The vibrant

research area of artificial neural networks was inspired by research on biological neural net-

works [5–7].

What if artificial neural network knowledge processing patterns are compared with knowl-

edge processing patterns of a variety of animals that show different complexity of knowledge

processing patterns, or in other words different brain complexity? Would there be any com-

mon characteristics?

There are a variety of methods for analyzing activity of multiple neurons. Some of these

methods are based on three-dimensional imaging scanning of tissue [8–10]. Others include
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mapping complete neural population in specific organs [11, 12]. Many techniques analyze ani-

mals by the number of neurons and try to place certain behaviors with their neural network

[13, 14].

The neural network connectivity and the network behavior analysis can consider the inter-

action signal activity of the neurons. The resolution of time can be measured in one-thou-

sandth of a second to longer time periods which could be up to weeks or even months.

Similarly the area analyzed can be from one-thousandth of a centimeter to a few centimeters

[15, 16].

Emission of electromagnetic radiation in the neural network is used to analyze the process

of the neural activity and the connected activity. The emission is used to process the activity of

different sizes of neural networks and their associated common simultaneous activity. Neural

network spiking is processed as a single neuron exciting multiple neurons that are not neces-

sarily connected [17]. Background activity can also be analyzed as a cause for neural network

spiking activity [18, 19].

The work proposes the idea that there are underlying characteristics such as the connectivity

structure between the nodes of the system processing the information. These underlying pat-

terns of characteristics appear to be consistent between the different systems as they evolve and

successfully process more sophisticated information. Biology has DNA as an underlying basic

element characteristic, Chemistry has the Periodic Table, and Physics has a set of equations.

This work analyzes whether knowledge has an underlying structure, “DNA for Knowledge”.

The main contributions are:

• A new knowledge modeling approach is presented based on evolving graphical

characteristics.

• The knowledge modeling approach is analyzed on different network processing systems:

artificial neural networks, academic topic networks, graph generation algorithms, and ani-

mal neuron-synapse structures.

• From the different graphical evolving characteristics some similarities appear across the dif-

ferent network processing systems.

The next section provides background information on related work on knowledge process-

ing in neuronless, non-biological systems and is followed by the methods section describing

the knowledge processing comparison analysis and the experiments on different network pro-

cessing systems. Then the results section identifies the characteristics that appear in the differ-

ent processing systems. The discussion section presents the overall commonality of the

knowledge model across the processing systems. Finally, the conclusion summarizes the

results and presents future work.

Related work

Machine learning and nature-inspired algorithms

Machine learning has been extensively used in areas such as content-based medical image

retrieval [20], topic classification of online news articles [21], and prediction of solar energy

generation [22]. Multiple approaches have been used to simplify the processing of the neural

network. A swarm intelligence-based classification algorithm was proposed for reducing

dimensionality (feature selection) in datasets [23]. Other approaches use heterogeneous graph

embedding to learn the low-dimensional representations of nodes, such as link prediction,

node classification, and community detection [24]. Furthermore, community detection was

performed by mapping nodes into communities based on a random walk in the network [25].
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therefore the datasets can be found in multiple

locations including their original sources. All the

datasets used in the experiment are publicly

available. Three existing multilabel classification

datasets were used for reviewing the Patterns of

Decision Making in Artificial Neural Networks,

where a series of images are classified into a set of

labels. They are all publicly available. • MNIST

(http://yann.lecun.com/exdb/mnist/): Handwritten

digits • Fasion_MNIST (https://github.com/

zalandoresearch/fashion-mnist): Fashion items •

KMNIST (http://codh.rois.ac.jp/kmnist/index.html.

en): Hiragana (Japanese characters) Analysis of the

Information Processing Mechanism on the

Academic Topic Networks is done on eight journal-

specific datasets curated from the Microsoft

Academic Graph bibliography database. The

curated dataset is made public in the following

location. • Domain-specific Topic Co-occurrence

Networks from Microsoft Academic Graph (https://

zenodo.org/record/6547761). Similar patterns in

randomly generated graphs were reviewed from

fixed graphs generated for the experiment. The

generated graphs were recorded online for public

access. • Four random graph generation

algorithms with example graph binary files (https://

zenodo.org/record/6547767). The knowledge

processing patterns in animal neuron-synapse

structures were analyzed based on two existing

neural map connectomes, which were made public

by respective research publications. • Roundworm

connectome (http://www.wormatlas.org/

handbook/nshandbook.htm/nswiring.htm):

Outdated, from Paper "Wiring optimization can

relate neuronal structure and function". • Fruit fly

hemisphere connectome (https://neuprint.janelia.

org/): From Paper "A connectome of the adult

drosophila central brain". Lastly, the minimal data

set is uploaded to an online data repository for

public access. • Common Knowledge Processing

Patterns in Networks of Different Systems Minimal

Data Set (https://zenodo.org/record/8122402).
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Nature-inspired machine learning algorithms appear in characterization of abnormalities

in breast cancer images involving training a Convolutional Neural Network using genetic algo-

rithm (GA), whale optimization algorithm (WOA), and multiverse optimizer (MVO), satin

bower optimization (SBO), and life choice-based optimization (LCBO) algorithms to optimize

weights and bias of the model [26]. In addition, COVID-19 cases prediction was performed

using a hybrid machine learning and beetle antennae search approach [27].

Neuronless knowledge processing

Decision making can be viewed in a collection of trees, a forest, and previous work compared

the input and output of each tree to the activity of a neuron. Biologically engineered knowledge

processing capabilities can be viewed as networks of neurons of plants. Existing literature on

information sharing, reasoning, and decision making in a collection of a large number of

plants, or forests is reviewed. The comparison showed similarity between the mechanism

based on neurons and the mechanism based on trees.

There has been research on similar neuron structure and neuron transmitter structure in

plants [28, 29]. Although neurons are viewed as the smallest unit which processes and trans-

mits information, there have been no findings leading to support that brain-like or neuron-

like structure appears in plants [30]. Previous work [31] has shown that trees can send and act

upon transmitted signals between them as a response to an insect attack. The communication

can be performed within the same species or between different species [32]. Certain chemical

compounds were identified as the main communication tool between the plants and between

plants and insects [33]. Fungus has also been shown to create a web of communication

between plants [34, 35].

Aerial signal transmission between the tree and plants has been explored [36, 37]. Further-

more, reversible memory in plants based on their surroundings was shown [38]. The memory

is based on forecasting changes in the surroundings favorable to the plant and a complex

changing control system [39, 40]. The knowledge structure which is useful to both the plant

transmitting and the plant or animal receiving is still unknown [37].

Previous work showed the network between trees can be used for knowledge processing to

implement decisions prioritizing the forest over a single tree regarding resource optimization.

When there is a resection of a network of trees in a forest, a trail, each network part will try

optimizing its overall access to light resources, represented by canopy tree coverage, indepen-

dently. Following resection, forest activity showed behavior similar to neuron activity behavior

[41].

This work presents the idea that the knowledge processing is not limited to a specific bio-

logical infrastructure, such as the brain, and similar patterns can also be observed in artificially

generated network systems, which have their own knowledge processing power. If the purpose

of each of these systems is different and the underlying processing structure is the same, then

these knowledge processing systems might be much more common in Nature than previously

thought.

Invisible brain

“Invisible brain” suggests the idea that there are different domains where knowledge process-

ing occurs [42]. Prior work identified that there is an additional layer of knowledge processing

between the neuron network system and the brain [43, 44]. If there is another layer of knowl-

edge processing and the knowledge processing occurs in multiple domains, then the issue of

the processing platform becomes relevant. Is there a need for a brain or is the brain just one

example of a processing system.
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The main processing of the brain is based on spiking neurons sending messages communi-

cating to other neurons. Assuming this process exists in other domains, it could be viewed in

other knowledge-containing domains such as research publications. The assumption that

research publication topics can represent a similar idea of neurons would require research

topic publication spiking and sending communication signals to research topics. This process

of communication of research topics published in articles can be monitored over multiple

years. The process of signal processing in the brain can be compared to spiking interest in

research topics across multiple areas.

What would happen if the way an Artificial Neural Network learns, which seems to show

successful learning characteristics in tasks such as classifying handwritten digits or identifying

images, is compared with the way Science learns new research directions and research topics

over time. The work studied four knowledge processing patterns by accessing the structural

patterns of natural and artificial networks responsible for such activities. This explorative

study aims to test whether neuron networks responsible for knowledge processing in living

organisms have any commonalities with manufactured networks with or without knowledge

processing capabilities.

Methods–knowledge processing comparison analysis

A set of comparison studies were performed to evaluate the existence of the theory of common

knowledge processing patterns in networks of different systems. One study reviewed artificial

neural networks. The second study reviewed the growing field of research knowledge. The

third study checked what type of graph generating algorithms works well with the patterns

identified. Finally, the fourth study reviewed known brain circuitries, connectomes, of various

animals.

Several approaches have been studied to compare the knowledge processing patterns in

both the biological and the artificial neural networks and show their similarities to the infor-

mation reasoning and knowledge evolution in academic topic networks. The network is

defined as a directional graph G = {V,E} composed of vertices V = {v1,v2,. . .,vn}, and edges E =

{ei,j|vi, vj2V}. The mechanism of knowledge processing is studied using the four network mea-

sures shown below. The four measures evaluate the characteristics between nodes: topics, ani-

mal neural networks, artificial neural networks, and their relations represented by their

connections or edges. The graph evaluation methods included:

• Average Degree = 2*|E|/|V|.

� The average degree of the graph is used to measure the number of edges compared to the

number of nodes.

• Average PageRank = 1

jVj �
P

vi2V

P
vj2N� ðviÞ

PRðvjÞ
degþðvjÞ

.

� The average PageRank measures the average importance of the connected nodes in the

network, where |V| is the number of nodes, N−(vi) is the inbound neighborhoods of the

given node vj, deg+(vj) is the outdegree of vj, and PR(vj) is the PageRank of vj.

• Average Clustering = 1

jVj �
P

vi2V
2 �

TriangleðviÞ
degðviÞ�ðdegðviÞ� 1Þ

� The average clustering coefficient measures the degree of node clusterability based on the

number of triangles each node vi is a member of.

• Average Triangles = 1

jVj � Triangle Vð Þ
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� The average number of triangles is measured to infer the approximated ratio of network

completeness by measuring the ratio of smallest cliques in the network.

The evaluation measures provide domain-independent quality characteristic information

for any graphs they are applied on. All the datasets used in the experiment share an identical

graph format, therefore the measures can be used to objectively compare the characteristics of

networks with vastly different origins. To achieve this, preprocessing has been performed on

some of the artificial networks such as the Artificial Neural Networks which are usually fully

connected to begin with. After the dataset preprocessing and graph generations, comparison

between structures of different domains is reduced to a problem of comparison between differ-

ent directed graphs.

Patterns of decision making in artificial neural networks

Information processing and decision-making mechanisms are analyzed in a wide range of

domains. First, the network patterns of the artificial neural networks are reviewed. The analysis

checks which of the different characteristics of artificial neural networks repeat when the neu-

ral network evolves to achieve better classification results, or in other words, learns.

Three image classification datasets are used to differently train the artificial neural networks

in order to analyze the common patterns observed during the decision-making process.

MNIST (http://yann.lecun.com/exdb/mnist/) is a subset database of a larger NIST dataset,

containing 60,000 training set examples of images of handwritten digits accompanied by

10,000 test set [45]. The 28 by 28 pixel images are centered for easier classification with 10 clas-

ses. Kuzushiji-MNIST (KMNIST) (http://codh.rois.ac.jp/kmnist/index.html.en) and Fashion-

MNIST (FMNIST) (https://github.com/zalandoresearch/fashion-mnist) are respectively a Jap-

anese Hiragana character classification dataset [46] and an apparel item classification dataset

[47], each sharing the MNIST’s format; 60,000 training set, 10,000 test set of 28x28 greyscale

images with a total of 10 classes.

The Artificial Neural Network (ANN) is generated with one input layer with 28x28 = 784

neurons, followed by three hidden layers with 80, 40, and 20 neurons each and an output layer

with 10 neurons. The Sigmoid function is used as hidden layers’ activation functions where 0.5

is the median value, and the output layer neurons are set to have normalized categorical proba-

bilities. The neural network is then trained using the training set with sparse categorical cross

entropy as a loss function, accuracy as the metric function, and stochastic gradient descent

Adam optimizer [48] as the optimization method.

Traditionally, fully connected layers are used; this is different from biological neural net-

works where the very structure of neuron-synapse connections represents knowledge process-

ing patterns. The ANN has a total of 501,760,000 links between the neurons for given datasets,

where many of them are obsolete in the decision making process. The patterns in ANN are

therefore defined as the structures of fired neurons V 0 ¼ fvijvi 2 V; outputðviÞ > 0:5g, or neu-

rons with the output value greater than the activation_threshold = 0.5, for each input.

The shared patterns shown during the decision-making process on different ANNs are ana-

lyzed. For each data set, the learning neural network characteristics were analyzed using the

four graph evaluation measures; degree, PageRank, clustering, and triangles. The measures are

averaged across each graph to generate a single value for any given graph. With multilabel clas-

sification datasets, the classification accuracy is recorded to show whether the found patterns

are correlated to the correct decision-making process. Cohesion is also added as a relative

quality measure for a set of subgraphs within the whole graph G

(G0 ¼ fV 0; E0g where E0 ¼ fei;jjvi; vj 2 V 0g). It is defined as the relative quality of the sub-

graphs to the whole graph G or the ratio of edges internal to the subgraph
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jE0j=fei;jjvi 2 V [ vj 2 V; outputtðvijvjÞ > 0:1g. The threshold variable outputt(vi|vj)>0.1 is

included in the formula to differentiate the otherwise complete graph; only nodes with output

greater than the graph_threshold = 0.1 are considered as the external neurons. Finally, the

degree of knowledge processing maturity is captured by running with a different number of

epochs during the ANN training to represent varying degree of training and network maturity.

A total of 100 epochs are used for each dataset, and knowledge patterns at epochs up to 10, and

every 10th up to 100 are recorded.

Information processing mechanism on the academic topic networks

Next, the characteristics when information reasoning and decision making are performed in

research are analyzed. This can be done by studying the change of entire fields of research over

time and comparing the information processing mechanism to the processing mechanism of

the neural network. In this case, the processing unit is a research topic in the field of research

instead of a neuron.

Research activities share similarities with the knowledge processing in the brain; knowledge

is propagated over the entities through their connections, which can result in the further prop-

agation of modified knowledge. Similarities between the information processing mechanism

on the research activity networks and the processing mechanism of the ANNs are reviewed,

using topic networks as representations of research activities.

Topic network Ti = {Vi, Ei} is defined as a graph with topics as vertices and topic co-occur-

rences as links observed by timeslot i. This is a cumulative network where the past research

activities are stacked in Ty to represent how the knowledge processing mechanism matured

over time. The topics and topic co-occurrences are extracted from the Microsoft Academic

Graph (MAG) dataset [49] for ease of access. It is one of the largest bibliographic data reposito-

ries with open access, and each publication within the dataset is linked to a built-in hierarchical

topic ontology called Fields of Study, which is generated monthly by combining the preexisting

knowledge base such as Wikipedia articles with state-of-the-art graph link analysis and convo-

lutional neural networks [50]. The topics and topic co-occurrences are both present in the

dataset, removing the necessity of further data preprocessing.

MAG contains more than 200 million publications, and analyzing the topic network as a

whole is computationally too complex for this analysis. Subsets of the bibliographic dataset are

used to build topic networks instead; publications under a specific journal are collected per the

topic network. Journals are used as the publications in a shared set of common topics, while

providing varying degrees of size, history, and research behaviors. Nature and Science are

selected as large journals with broad research interest, while the New England Journal of Medi-
cine (NEJM) and Physical Review (Phys.Rev) are selected as the top journals more focused on

their respective research domains. Cell is selected to represent a top tier journal with a rela-

tively short history. Journal of High Energy Physics (HEP), Journal of Informetrics (JoI), and

Knowledge Based Systems (KBS) are selected as topic-specific journals with the different

research fields of particle physics, artificial intelligence, and informetrics, respectively.

The total of eight journals used covers a wide range of properties; the first year of the jour-

nal publication appearance ranges from y = 1900 for NEJM to y = 2007 for JoI. The four net-

work measures for the knowledge processing mechanism are calculated for the ordered

timeslot with index i for years y� 2020, allowing an analysis of the mechanism maturity over

time on one journal as well as the comparison between different journals at the same timeslots

apart from their first appearances. The whole networks are considered; therefore the cohesion

is not measured, as well as the classification accuracy.
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The second set of comparisons reviewed for each set of selected journals the characteristics

of the graph as the domain-specific topics mature over the years. The analyzed graph charac-

teristics were the same except that there is only one value for each year for each journal. The

comparison studies graph learning patterns over time as the number of topics in each journal

domain increases. The increase in the number of edges and nodes was also evaluated.

Similar patterns in randomly generated graphs

Next a study whether random graph generating algorithms used to create networks share simi-

lar characteristics to the artificial neural network or the journal topic domain knowledge was

performed. Similar characteristics were reviewed to find whether one of the graph generating

methods could serve as a predictive tool for any of these knowledge processing patterns.

Information processing is controlled by the basic mechanism of knowledge processing. The

four measures are found on randomly generated graphs to identify the shared basic patterns in

not only the ANNs, the topic networks, but also any network structures.

Four graph generating algorithms are reviewed. The Barabási–Albert (BA) model is an

algorithm for generating a random scale-free network Gn,e using the BA preferential attach-

ment mechanism [51] with n nodes each connected to e existing nodes. V = {v1, v2,. . .,vn}, ve+1

is first linked to {v1, v2,. . .,ve} to initialize the graph. Node set {ve+2, ve+3,. . .,vn} is then itera-

tively added to the graph each with e edge to the existing node vi each with probability

pvi
¼ degðviÞ=

P
ndegðvnÞ. Two variants of the Erdős-Rényi model [52], Gn,p and Gn,m, are

used. Gn,p is generated by randomly generating links between n vertices V = {v1, v2,. . .,vn},

where each possible link (vi, vj) has an independent probability p of being created. Gn,m is uni-

formly selected from a set of all non-isomorphic graphs with n nodes and m edges. Last, ran-

dom regular graph Gn,d is generated as a d-regular graph with n vertices which denotes the

probability space of all d-regular graphs on n vertices, where 3�d<n and n�d is even [53]. The

graph generating algorithms are run 20 times to retrieve average values of the four measures,

with n = 200, p = 0.015, and e = d = 20.

Knowledge processing patterns in animal neuron-synapse structures

From there, the most common acceptable process of thinking attributed to the biological neu-

ron is evaluated. The work looks at animal neuron systems, which in the literature were

explored and their full neural network mapped. Both the artificial and the biological networks

rely on a similar basic mechanism, the neuron. The analysis of the knowledge processing char-

acteristics found both in artificial neurons and in research fields shows that the systems are

able to process more information when as the systems get more complex. When compared to

multiple animal brain system structures at different levels of brain complexity, these systems

show similarities.

Neurons are viewed as the basic cells that process and transmit information, and this study

is conducted to compare the similarities between the information processing mechanism in

neuron-based systems and non-neuron-based systems.

The last study reviews the network configuration in animals. This includes the Caenorhab-

ditis elegans (roundworm) and Fruit Fly, for which the number of neurons and the brain syn-

apses have been fully mapped, as well as eight animals with estimated number of neurons

whose connections are projected with random graph generation algorithms using a various

range of neuron-synapse ratios. The characteristics of the fully mapped and algorithmically

generated animal neural networks are compared to the naturally occurring animal networks.

There are a limited number of openly available connectomes; two connectomes, or neural

maps, are used in the study. A neural connectivity of Caenorhabditis elegans (roundworm)
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nerve system by Wormatlas (https://www.wormatlas.org/neuronalwiring.html) contains 6,417

connections between 281 neurons [54]. The neuron types are separated into single/poly-syn-

aptic connections, electric junctions, and neuromuscular junctions, when each can be inter-

preted as the hidden layers, input layer, and output layer in ANN structures. Sending and

receiving connections refer to duplicate synapses; therefore the Receiving and Receiving-Poly

types are removed from the dataset, resulting in a total of 2,405 non-overlapping connections.

The hemibrain connectome [55] is the largest reconstructed synaptic connectome dataset to

date, storing the neuron connectivity data for the central part of a fruit fly brain for tasks

including associative learning, flight navigation, and sensory input processing. The dataset

contains around 25,000 neurons, and of those 21,733 neurons were extracted with 2,872,500

synaptic connections.

The number of connections between neurons and types of neurons is ignored to build sin-

gle-layered, unweighted graphs following the same format from the previous comparisons.

The differences in the structures of actual neural maps and randomly generated graphs are

studied by generating two sets of random networks sharing the same graph properties of two

actual neural maps. Gn,p of the Erdős-Rényi model is used where the edge probability p is cal-

culated as p ¼ 2 � jEj=ðjVj∗ðjVj � 1ÞÞ, resulting in p = 0.0611 for the roundworm and

p = 0.0122 for the fruit fly.

Comparing the measurement of two neural maps is limited in that there are no mid-points

from which to infer the gradual changes. Intermediate graphs are generated by applying the

Gn,p Erdős-Rényi model with n and p values around that of the roundworm and the fruit fly.

Eight animals with an estimated number of neurons are selected, with n ranging from 200 to

18,000 as shown in Table 1. The differences between p for two known neural maps are not sim-

ilar; therefore ten p values between the two ps are used to generate ten graphs for each animal.

Next, the previously mapped Caenorhabditis elegans (roundworm) and Fruit Fly were used

to build a network (using the mapped nodes/links). The Erdős-Rényi Gn,p algorithm was

implemented to generate a graph based on a similar number of neurons and synapses using

the same number of n and p. Then, the algorithm was tested on additional different animals to

generate a graph based on a similar number of neurons/synapses.

Two graphs were generated using n and p for each insect, where

n = the neuron size

• n(worm) = 281

• n(fruitfly) = 21,733

p = number of edges / possible edges (n*(n-1)/2)

• p(worm) = 0.0611

• p(fruitfly) = 0.0122

Table 2 shows the degree, PageRank, clustering, and triangles of the worm and fruit fly

compared to the graph generated by the Erdős-Rényi algorithm. The average degree and

Table 1. List of animals used as intermediates between roundworm and fruit fly with estimated number of neurons.

Animal # Neurons Animal # Neurons

Asplanchna brightwellii (rotifer) [56] 200 Megaphragma mymaripenne [60] 7,400

Ciona intestinalis larva (sea squirt) [57, 58] 231 Medicinal leech [61] 10,000

Caenorhabditis elegans (roundworm) [54] 302 Pond snail [62] 11,000

Jellyfish [59] 5,600 Sea slug [63] 18,000

https://doi.org/10.1371/journal.pone.0290326.t001
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PageRank are directly dependent on the number of neurons and the synapses, and therefore

they are consistent with both the natural and artificially generated graph. The interesting val-

ues are the clustering, which seems to decrease as the animal processing ability, defined by the

graph as the number of neurons and synapses, increases. Conversely, the number of triangles

increases as the animal is considered to have a more complex knowledge processing mecha-

nism. In both cases, the Erdős-Rényi algorithm shows similar patterns although the scale is not

identical for the clustering and triangles.

The changes in the four properties basically come from a larger size and increasing com-

plexity so it can be stated that the changes in the properties of generated graphs would follow

those of the real neural maps. The comparison shows that the changes with larger n are consis-

tent with the neuron maps. As long as the p is known, the same algorithm can be used with dif-

ferent numbers of neurons and similar results can be expected.

Based on the previous data, the graph properties were projected for an additional eight ani-

mals for which the number of neurons was previously published (Table 1). The animals were

selected due to their number of neurons, which is in the range of the worm and the fruit fly for

which all the data is available. The projected structural properties use a randomly generated

graph with varying p values. Ten p values are uniformly chosen between p of fruit fly

(0.012164) and p of worm (0.061134).

Results

The generated graphs are analyzed to detect unique and shared characteristics between biolog-

ical and artificial knowledge processing networks, with the random networks as a baseline

with the simplistic nature and the connectomes as the biological structure for the knowledge

processing functions. Each graph is first analyzed independently with the evaluation measures,

and the commonalities and differences in their measures are then reviewed. Artificial networks

with similar evaluation measures to biological networks are interpreted as networks sharing

knowledge processing mechanisms to the neural and brain networks.

Fig 1 shows the graph learning characteristics as the artificial neural network learns. The X-

axis represents the growing number of epochs, and the Y-axis shows the accuracy (a) The

results show that the accuracy increases and stabilizes for all datasets; the correlation coeffi-

cient of 0.4322 between the accuracy of the epoch count of up to 10 shows medium correlation

during the initial stage of network maturation. In (b) the results show that the average degree

decreases and stabilizes. PageRank (c) also shows a change, which is an increase, but the

increase itself is small due to the characteristics of PageRank. The smaller changes are also

reflected in its jagged patterns, which show nearly no correlation (-0.0566) and statistically sig-

nificant mean value differences (T-test p value = 0) with the accuracy. Similarly, all other mea-

sures showed low to no correlation to the accuracy with the clustering showing the highest

value (0.2533). This indicates that the maturity of the knowledge processing network is not

governed by a single graph structure measure. The cohesion (d) and clustering (e) do not pres-

ent consistent behavior as the number of epochs increases and therefore are less representative

Table 2. Worm and fruit fly versus generated graph.

#neurons #synapses avg_degree avg_pagerank avg_clustering avg_triangles

Worm 281 2,405 17.1174 0.0036 0.3460 47.5943

Fruitfly 21,733 2,872,500 264.3445 4.60E-05 0.3137 12605.9781

Generated_worm 281 2,350 16.7260 0.0036 0.0611 8.5836

Generated_fruitfly 21,733 2,873,553 264.4414 4.60E-05 0.0122 425.5065

https://doi.org/10.1371/journal.pone.0290326.t002
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Fig 1. Graph learning characteristics as the artificial neural network learns as shown by the average properties of neural networks.

https://doi.org/10.1371/journal.pone.0290326.g001
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measurements of the change of graph characteristics. Finally, the number of triangles (f) dis-

plays the most consistent decrease and stabilization of the number of triangles along with the

degree (b) over epochs with near identical patterns (correlation value of 0.9963, with statisti-

cally significant mean normalized differences with p = 0). This is a natural behavior of growing

networks as the change in the average degrees directly affects the average number of triangles

each node can be a member of.

Fig 2 describes the research activity as an “invisible brain” according to topic behavior and

reviews graph learning characteristics in the past 120 years of advancement, with 1900 to 2020

as the X-axis. (a) and (b) show the increase in the number of nodes and edges accordingly.

Most publication outlets present almost linear growth in nodes and then exponential growth

in edges to the more historic publications with extremely high correlation (0.9755). The only

exception is Physical Review which seems to have artificially limited the topics, and as a result

the nodes of publication have been limited to a fixed number in 1970 which influences all the

results. Average degree (c) shows consistent growth, while PageRank (d) shows a very fast

decrease and stabilization shortly after each new journal is created. The clustering (e) consis-

tently has linear decline as the years advance. The number of triangles (f) presents a linear

increase similar to the degree but represents the most consistent characteristic, which describes

the increase in knowledge as the number of topics represented grows in each of the publica-

tions. While the degree and the triangles show the same high correlation (0.9267) as they did

in the previous example, they show an inverse pattern over time with increasing values as

opposed to in Fig 1. This represents a different knowledge processing pattern; while the classi-

fication ANNs matured by disseminating their functions over network structures, journal pub-

lications instead matured by centralizing on key topics. Such differences can be seen between

the relationship between the four evaluation measures and their sizes as well; while ANOVA

shows statistically significant differences (p = 0) between all six variables, their evolution pat-

terns show different similarities with diminishing PageRank and clustering values over the

years.

Fig 3 compares the four different graph generating algorithms, Barabási–Albert Gn,e and

Erdős-Rényi Gn,p, Gn,m, and random regular graph Gn,d, to evaluate which method has the

most similar characteristics to the artificial neural network and the “invisible brain” repre-

sented by the growing network of research topics. The randomly generated graphs were

expanded over 20 iterations, adding 200 nodes at each iteration, resulting in the total of 4,000

nodes in the final graph. The results show that the average degree (a) is constant in Gn,m and

Gn,d and almost constant except for the beginning in the Barabási–Albert with the iteration

count as the X-axis. However, as the graph iterations increase all the way to twenty, the Erdős-

Rényi Gn,p method presents a consistent linear increase in the average number of triangles (c).

This is because only Gn,p has an edge generation variable dependent on the population sizes.

The BA model dictates the degree with the existing node connection variable e, which results

in edge overlaps in lower iterations. Gn,m and Gn,d each dictate their edge generations with a

fixed edge size e and regular graph with neighbor count d, resulting in a static degree during

graph expansion. Only Gn,p results in a linear growth in the degree as the population of possi-

ble edges increases exponentially. The number of edges therefore increases exponentially with

static edge probability p resulting in linear increase in node degrees.

Similarly, for the average clustering all three methods except for Erdős-Rényi Gn,p present a

logarithmic decrease in value, while Erdős-Rényi Gn,p presents just the opposite, with increas-

ing growth in the average number of triangles in the graph. Comparing the PageRank values of

each of the four methods (b) shows the exact same results. The PageRank is a characteristic

used to generate the graphs in all four methods and therefore cannot be used as a differentiat-

ing feature. Finally, the graph average clustering (d) displays similar behavior to the average
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Fig 2. Research activity (“invisible brain”) graph learning characteristics.

https://doi.org/10.1371/journal.pone.0290326.g002
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number of triangles of all three methods having a fast logarithmic decrease in value except for

the Erdős-Rényi Gn,p, which presents an expanding increase throughout all twenty iterations,

although the increase slows down after the third iteration.

Fig 4 presents the projected graph properties for the different animals. Ten neural maps

were artificially generated for each animal in Table 1 using ten uniformly distributed edge

completion ratios ranging from p(fruitfly) = 0.012164 to p(worm) = 0.061134. With their esti-

mated number of neurons as the number of nodes, edges between the neurons are generated

using the ratio values (p1, p2, . . ., p10) to reflect the varying degree of connectome complexity.

The two values shown as the black cross represent the values of the true neural maps of fruit fly

and the worm. Eight animals from Table 1 are represented by their estimated number of neu-

rons on the X-axis. All Y-axis values are presented in logarithmic scale. All the iterations

showed that larger p value and larger n value both result in higher synapses (a), higher average

degree (b), and higher average triangles (d). Average clustering (c) fluctuated more by the p

value and was less affected by the n value. As the number and distribution of edges are gov-

erned by a graph generation algorithm, all three evaluation measures used in the analysis

Fig 3. Graph generated characteristics for multiple algorithms.

https://doi.org/10.1371/journal.pone.0290326.g003
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showed statistically insignificant differences with ANOVA p-value of 1 across the eight ani-

mals, indicating that the main factor is the number of neurons.

Discussion—knowledge regardless of the brain

Knowledge processing appears to be relatively common in many areas, and neurons, whether

created naturally or artificially, do not seem to be required as the basic mechanism for enabling

the information processing. This leads to the question of what are the most basic rules, or

graph characteristics, required to perform information pattern processing. The results present

Fig 4. Projected graph properties for different animals, with the number of neurons as the X-axis.

https://doi.org/10.1371/journal.pone.0290326.g004

Table 3. Knowledge networks comparison summary.

avg_degree avg_pagerank avg_clustering avg_triangles

Artificial neural network classification with increasing epochs Down Up Up Down

Topic networks with incrementing years Up Down Down Up

Erdős-Rényi Random networks with increasing size Up Down Down Up

Animal neuron maps with increasing #neurons Up Down Down Up

https://doi.org/10.1371/journal.pone.0290326.t003
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these basic sets of rules required to process information and show these sets of rules using

graph analysis techniques to view how well they perform under different conditions.

Finally, a comparison of the characteristics between all previous studies is presented,

reviewing only the changes in the trend as the knowledge network gets larger. The summary is

displayed in Table 3. The artificial neural network seems to be consistent with most of the

graph generation algorithm trends regarding PageRank, clustering, and triangles but not

degree. However, if the Erdős-Rényi graph generating algorithm is used, then similar charac-

teristics to the topic network, graph generating algorithm, and animal neuron network are

shown. This is somewhat counterintuitive, since while usually artificial neural networks pres-

ent good results in finding patterns in knowledge, in this case the characteristics of the artificial

neural networks present opposite trends of the graph pattern change, compared to the other

domains. The opposite trends could be explained by the fact that the artificial neural networks

used today are generated using most of the common graph generation algorithms. However,

graph generating algorithms such as Erdős-Rényi present trends which are more consistent

with both the increasing topic network and the natural configurations of the specimens

reviewed. An alternative configuration of artificial neural networks might yield trends that are

more consistent with natural networks.

The question of how knowledge is represented and whether it has a basic structure is ana-

lyzed. The analysis was performed on graphs of artificial neural networks, research topic

expanding graphs, artificially generated graphs, and real neural network structures in animals.

There appears to be a method to the madness, and specific graph properties increase in a pre-

defined structure that can be represented by graph generating algorithms.

The overall result analysis shows an increase in the average degree, which measures the

number of edges compared to the number of nodes, and an increase in the average number of

triangles, measuring the ratio of smallest cliques in the network. This shows that as more

knowledge is represented by the network the network becomes more tightly knitted.

At the same time there is a decrease in the PageRank, which measures the average impor-

tance of the connected nodes in the network, and a decrease in the average clustering, which

measures node clusterability based on the number of triangles each node is a member of.

These results show that specific nodes become less unique or important as the knowledge in

the network increases and the nodes representing specific knowledge are more widely shared

or less clustered together as the network increases.

Conclusion and further research

Basic patterns of knowledge processing are found across systems which appear to be essentially

different and each one serves a different purpose. Furthermore, some of these systems are nat-

urally created biologically based systems, while others are artificial systems created by humans

and work on electronic circuits. The similarity in patterns of knowledge processing systems

raises the question of how unique are humans in processing knowledge.

Further research can improve the similarity in values of properties such as clustering by

building more tailored algorithms for representing the graph growth as the knowledge repre-

sented increases. Other artificial neural networks might fit the patterns found in topic net-

works, random graph generation methods, and mapping animals with increasing number of

neurons. Analyzing convolution neural networks, deep neural networks, and graph neural net-

works for these characteristics might yield interesting results. In addition, as additional

research works identifying the sizes of different animal neural networks increase, verifying the

different animal neural network sizes, the properties projecting the graph characteristics can

be adjusted.
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